Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bai 1:
a: \(\widehat{zOy}=180^0-70^0=110^0\)
b: Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOz}< \widehat{xOt}\)
nên tia Oz nằm giữa hai tia Ox và Ot
mà \(\widehat{xOz}=\dfrac{1}{2}\widehat{xOt}\)
nên Oz là tia phân giác của góc xOt
1) a. vì xoy và yoz là hai góc kề bù
-> xoy + yoz = 180*
-> 60* + yoz = 180*
-> yoz = 180* - 60* = 120*
b) tia oa là tia p.g của aoz
-> yoa = aoz = 1/2aoz -> 120* . 1/2 = 60*
ob là tia p.g của aoz -> aob = boz = 1/2 aoz -> 60* . 1/2 = 30*
vì box và boz là 2 góc kề bù
-> box + boz = 180*
-> box + 30* = 180*
-> box = 180* - 30* = 150*
vì box = 150* -> box là góc tù
2) a. vì xoy và yoz là 2 góc kề bù
-> xoy + yoz = 180*
-> 120*+ yoz= 180*
-> yoz = 180*-120* = 60*
b. trên nửa mp bờ chứa tia oz có zoy < zot ( 60*<130* )
-> tia oy nằm giữa 2 tia oz và ot
c. vì xot và toz là 2 góc kề bù
-> xot + toz = 180*
-> xot + 130* = 180*
-> xot = 180*-130*=50*
3) a. vì xoy và yoz là 2 góc kề bù
-> xoy + yoz = 180*
-> 140*+ yoz= 180*
-> yoz = 180*-140*=40*
b. tia ot là tia p.g của xoy => xot =toy = 1/2 xoy => 140*.1/2=70*
vì xot và zot là 2 góc kề bù
->xot + zot = 180*
->70* + zot = 180*
->zot = 180*-70*=110*
4) a. vì xoz và zoy là 2 góc kề bù
->xoz + zoy = 180*
-> 70*+ zoy= 180*
-> zoy = 180*-70*=110*
b. trên nửa mp bờ ox có xoz < xot ( 70*< 140*)
=> tia oz nằm giữa 2 tia ox và ot (1)
-> xoz +zot=xot
-> 70* + zot = 140*
-> zot = 140* - 70* = 70*
=> xoz = zot (= 70*) ( 2 )
từ (1) và (2) => tia oz là tia p.g của xot
like cho mk nhé
a: \(\widehat{xOt}=\widehat{yOt}=\dfrac{60^0}{2}=30^0\)
b: \(\widehat{zOy}=180^0-60^0=120^0\)
=>\(\widehat{zOm}=\widehat{mOy}=60^0\)
\(\widehat{tOm}=\widehat{tOy}+\widehat{mOy}=90^0\)
\(\widehat{x'Oy}=180^0-100^0=80^0\)
\(\widehat{xOt}=\dfrac{100^0}{2}=50^0\)
\(\widehat{x'Ot}=180^0-50^0=130^0\)
\(\widehat{x'Ot'}=\dfrac{80^0}{2}=40^0\)
nên \(\widehat{xOt'}=140^0\)
\(\widehat{tOt'}=\dfrac{180^0}{2}=90^0\)
a; \(\widehat{tOy}=\dfrac{50^0}{2}=25^0\)
Trên cùng một nửa mặt phẳng bờ chứa tia Ot, ta có: \(\widehat{tOy}< \widehat{tOm}\)
nên tia Oy nằm giữa hai tia Ot và Om
=>\(\widehat{tOy}+\widehat{mOy}=\widehat{tOm}\)
hay \(\widehat{yOm}=55^0\)
b: \(\widehat{yOz}=180^0-50^0=130^0\)
Trên cùng một nửa mặt phẳng bờ chứa tia Oy, ta có: \(\widehat{yOm}< \widehat{yOz}\)
nên tia Om nằm giữa hai tia Oy và Oz
mà \(\widehat{yOm}< >\dfrac{1}{2}\widehat{yOz}\)
nên Om không là tia phân giác của góc yOz
Câu 1:
a: \(\widehat{xOz}=180^0-60^0=120^0\)
b: \(\widehat{zOm}=\dfrac{120^0}{2}=60^0\)
\(\widehat{zOn}=\dfrac{60^0}{2}=30^0\)
Do đó: \(\widehat{zOm};\widehat{zOn}\) là hai góc phụ nhau