Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\widehat{x'Oy'}=\widehat{xOy}=70^0\left(2.góc.đđ\right)\)
\(b,\widehat{x'Oy}.đối.đỉnh.\widehat{xOy'}\) do \(Ox.đối.Ox';Oy.đối.Oy'\)
\(c,\widehat{xOy'}+\widehat{xOy}=180^0\left(kề.bù\right)\\ \Rightarrow\widehat{xOy'}=180^0-70^0=110^0\\ \widehat{xOy'}=\widehat{x'Oy}=110^0\left(đối.đỉnh\right)\)
Vì \(\widehat{xOy}\)và \(\widehat{x'Oy'}\) là 2 góc đối đỉnh => \(\widehat{xOy}\)= \(\widehat{x'Oy'}\)
Ot là tia đối của Oz => \(\widehat{xOz}\)= \(\widehat{x'Ot}\) (hai góc đối đỉnh)(1)
\(\widehat{yOz}\)= \(\widehat{tOy'}\) (hai góc đối đỉnh)(2)
vì Oz là tia phân giác của \(\widehat{xOy}\) => \(\widehat{xOz}\)= \(\widehat{yOz}\)(3)
Từ (1),(2),(3) => \(\widehat{x'Ot}\)= \(\widehat{tOy'}\)=> Ot là tia phân giác của \(\widehat{x'Oy'}\)
Chúc bạn học tốt nha!
a) Ta có :
xOy' + y'Ox' =90 độ (gt)
y'Ox' + x'Oy = 90 độ (gt)
=> xOy' = 90 - y'Ox'
=> x'Oy = 90 - y'Ox'
=> xOy' = x'Oy (cùng bằng 90 - y'Ox')(dpcm)
b) Gọi Ot là pg y'Ox'(1)
=> y'Ot = x'Ot
tOy = tOx' + x'Oy
Mà y'Ot = tOx'
xOy' = x'Oy (cmt)
=> xOt = tOy
=> Ot là pg xOy (2)
Từ (1) và (2) ta có :
=> y'Ox' và xOy có cùng tia pg
Ta có:
Do ˆxOyxOy^ và ˆxOy′xOy′^ là 2 góc kề bù
⇒⇒ˆxOyxOy^ + ˆxOy′xOy′^ = 180o
⇒⇒60o + ˆxOy′xOy′^ = 180o
⇒⇒ˆxOy′xOy′^ = 180o - 60o = 120o
Vậy ˆxOy′xOy′^= 120o
Ta có:
Do ˆxOyxOy^và góc ˆx′Oy′x′Oy′^ là 2 góc đối đỉnh
⇒⇒ˆxOy=ˆx′Oy′=60oxOy^=x′Oy′^=60o
Ta có:
Do ˆxOyxOy^ và ˆx′Oyx′Oy^ là 2 góc kề bù
⇒ˆxOy+ˆx′Oy=180o⇒xOy^+x′Oy^=180o
⇒60o+ˆx′Oy=180o⇒60o+x′Oy^=180o
⇒ˆx′Oy=180o−60o=120o⇒x′Oy^=180o−60o=120o
Vậy ˆx′Oy=120ox′Oy=120o^
Hoặc bạn có thể giải bằng cách này thì ngắn gọn hơn
Ta có:
Do ˆxOy′xOy′^ và ˆx′Oyx′Oy^ là hai góc đối đỉnh
⇒ˆxOy′=ˆx′Oy=120o⇒xOy′^=x′Oy^=120o
Vậy ˆx′Oy=120o
Có: góc xOy+ góc xOy'=180o(kề bù)
suy ra: góc xOy'=180o - góc xOy=180o - 60o=120o
góc x'Oy'= góc xOy=60o( đối đỉnh)
Lại có: góc x'Oy=góc xOy'=120o(đối đỉnh)
CHÚC BẠN HỌC TỐT
Cmr + vẽ hình
y' O
Gọi A là giao điểm của Ox và Oy
=> Ta có:
\(\widehat{xOy}=\widehat{OAO'}\left(slt\right)\)
\(OAO=\widehat{xO''A}\left(slt\right)\)
Vậy đã chứng minh xong \(\widehat{xOy}=\widehat{xOy'}\)
Sửa đề : Cho góc nhọn xOy và 1 điểm O'.Hãy vẽ 1 góc nhọn x'Oy' có Ox // O'x' , Oy // O'y' . Hãy chứng minh góc xOy và x'Oy' bằng nhau
Nếu đề sửa như vậy thì
2 1 y x O O y' x' 1 2
GT xOy và x'O'y' đều là góc nhọn Ox // O'x',Oy // O'y' KL xOy = x'O'y'
Chứng minh
Vẽ đường thẳng OO'
Vì Ox // O'x' nên có hai góc đồng vị bằng nhau :
\(\widehat{O_1}=\widehat{O'}_1\) [1]
Vì Oy // O'y' nên có hai góc đồng vị bằng nhau :
\(\widehat{O_2}=\widehat{O'}_2\) [2]
Từ 1 và 2 suy ra \(\widehat{O_1}-\widehat{O}_2=\widehat{O'}_1-\widehat{O'}_2\)
hay \(\widehat{xOy}=\widehat{x'Oy'}\)
x'Oy'=\(60^o\)
Vì \(\widehat{x'Oy'}\) đối đỉnh với \(\widehat{xOy}\) mà \(\widehat{xOy}=60^0\) nên \(\widehat{x'Oy'=60^0}\)