Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: P(110110) = 5x + 1212 = 5 . 110110 + 1212 = 1212 + 1212 = 1 ≠ 0
Vậy x = 110110 không là nghiệm của P(x).
b) Ta có: Q(1) = 12 - 4.1 + 3 = 1 - 4 + 3 = 0 => x = 1 là nghiệm của Q(x)
Q(3) = 32 - 4.3 + 3 = 9 - 12 + 3 = 0
Vậy x = 1; x = 3 là nghiệm của Q(x).
a) Ta có: P(110110) = 5x + 1212 = 5 . 110110 + 1212 = 1212 + 1212 = 1 ≠ 0
Vậy x = 110110 không là nghiệm của P(x).
b) Ta có: Q(1) = 12 - 4.1 + 3 = 1 - 4 + 3 = 0 => x = 1 là nghiệm của Q(x)
Q(3) = 32 - 4.3 + 3 = 9 - 12 + 3 = 0
Vậy x = 1; x = 3 là nghiệm của Q(x).
a) Đơn thức: \(2xy^2;\dfrac{x}{3y};5\)
b) Đa thức: \(2x+3y;\dfrac{x-1}{x+1};x^3y^2-1\)
Ta có :\(\dfrac{x}{y+z}=\dfrac{123-\left(y+z\right)}{y+z}\)
\(\dfrac{y}{x+z}=\dfrac{123-\left(x+z\right)}{x+z}\)
\(\dfrac{z}{y+x}=\dfrac{123-\left(y+x\right)}{y+x}\)
\(\Rightarrow P=\dfrac{123-\left(y+z\right)}{y+z}+\dfrac{123-\left(z+x\right)}{z+x}+\dfrac{123-\left(y+x\right)}{y+x}\)\(\Rightarrow P=123\left(\dfrac{1}{y+z}+\dfrac{1}{x+y}+\dfrac{1}{z+x}\right)-3\)
\(\Rightarrow P=123.\dfrac{1}{45}-3\)
\(\Rightarrow P=-\dfrac{4}{15}\)
ko vì đơn thức là biểu thức đại số chỉ gồm một số, 1 biến hoặc 1 tích giữa các số và các biến hay là 1 hạng tử.
a: \(A=\dfrac{-1}{2}x^2y\cdot\dfrac{3}{2}xy=-\dfrac{3}{4}x^3y^2\)
\(B=x^2y^2\cdot y=x^2y^3\)
\(C=-\dfrac{1}{8}y^3x^2=-\dfrac{1}{8}x^2y^3\)
\(D=-x^2y^2\cdot\dfrac{-2}{3}x^3y=\dfrac{2}{3}x^5y^3\)
Các đa thức đồng dạng là B và C
b: \(\left\{{}\begin{matrix}-\dfrac{3}{4}x^3y^2>0\\-\dfrac{1}{8}x^2y^3>0\\\dfrac{2}{3}x^5y^3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^3< 0\\y^3< 0\\xy>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\)
1.\(A=-\dfrac{3}{4}x^2yz;B=\dfrac{1}{3}xy^2;C=-\dfrac{8}{7}xy^2\)
\(A.\left(B+C\right)=-\dfrac{3}{4}x^2yz\left[\dfrac{1}{3}xy^2+\left(-\dfrac{8}{7}xy^2\right)\right]\)
\(=-\dfrac{3}{4}x^2yz\left(\dfrac{1}{3}xy^2-\dfrac{8}{7}xy^2\right)\)
\(=\left(-\dfrac{3}{4}x^2yz\right)\dfrac{1}{3}xy^2-\left(-\dfrac{3}{4}x^2yz\right)\dfrac{8}{7}xy^2\)
\(=-\dfrac{1}{4}x^3y^3z+\dfrac{6}{7}x^3y^3z\)
1. Ta có: \(-\dfrac{3}{4}x^2yz;B=\dfrac{1}{3}xy^2;C=-\dfrac{8}{7}xy^2\)
\(B+C=\dfrac{1}{3}xy^2-\dfrac{8}{7}xy^2=-\dfrac{17}{21}xy^2\)
\(A.\left(B+C\right)=\left(-\dfrac{3}{4}x^2yz\right).\left(-\dfrac{17}{21}xy^2\right)\)
\(\Rightarrow A.\left(B+C\right)=\dfrac{17}{28}x^3y^3z\)
\(\dfrac{1}{y}\) không gọi là đơn thức
chắc là ko