Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu kì dao động: \(T=\dfrac{2\pi}{\omega}=0,5s\)
a) t = 0,124s = T/4
Biểu diễn dao động bằng véc tơ quay, ta có:
-8 > x 8 O -4 M N 30 60 30
Ban đầu, vị trí của vật ứng với véc tơ quay tại M, sau T/4, vị trí đó đến điểm N.
\(\Rightarrow x = 8\cos 30^0=4\sqrt 3(cm)\)
b) Hoàn toàn tương tự, ta tìm được li độ của vật sau 0,3125s là \(x=0cm\)
Để tính vị trí của vật điều hoà tại thời điểm 1/3 giây sau khi vật có li độ x = 3cm, chúng ta cần tính giá trị của x tại thời điểm đó.
Phương trình vật dao động điều hoà đã cho là: x = 6cos(2πt - π/6) (cm)
Để tìm thời điểm 1/3s tiếp theo, ta thay t = 1/3 vào phương trình trên:
x = 6cos(2π(1/3) - π/6) = 6cos(2π/3 - π/6) = 6cos(π/2) = 6 * 0 = 0 (cm)
Vậy, tại thời điểm 1/3s tiếp theo, vật sẽ ở li độ x = 0cm.
Chu kì dao động: \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{4\pi}=0,5s\)
Ta có: \(x=2,5\sqrt{2}=\dfrac{A\sqrt{2}}{2}\) và đang có xu hướng giảm.
Lúc này vật ở thời điểm: \(t_1=\dfrac{T}{8}\)
Tại thời điểm: \(t=\dfrac{7}{48}s=\dfrac{7T}{14}=\dfrac{T}{8}+\dfrac{T}{6}\)
Dựa vào vòng tròn lượng giác \(\Rightarrow x=2,5cm\)
Theo mình là câu D bạn nhé vì từ pt suy ra được tần số gốc là pi:3 mà T=2pi:tần số gốc => T=6s Tại t1 có x=2cm Vậy t1+6=t1+T nên sau khi đi 1 chu kì vẫn quay lại vị trí x=2cm
Biểu diễn dao động bằng véc tơ quay, trong thời gian 0,25s véc tơ quay một góc: \(0,25.4\pi=\pi\)(rad)
Véc tơ quay quay góc 1800, thì li độ có giá trị -4cm.
Sao biết pi quay 180 độ v bạn . -4 mình cũng k biết nữa . mong bạn chỉ
Chu kì: \(T=\frac{2\pi}{5\pi}=0,4s\)
Trong thời gian 1/10 s = 1/4 T thì véc tơ quay đã quay một góc: 360/4 = 900.
Biểu diễn bằng véc tơ quay, ta dễ dàng tìm đc li độ thời điểm sau đó 1/10 s là 4 và -4cm.
Trong 2s, vật quay được góc: \(\varphi=\omega t=2\pi\left(rad\right)\)
Có nghĩa là vật sẽ quay một vòng rồi về chính vị trí ban đầu. Tức là ban đầu vật có li độ x=4, tại thời điểm t+2(s), vật cũng có li độ x=4