K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2020

a) Ta có: \(\sqrt{16-6\sqrt{7}}+\sqrt{7}\)

\(=\sqrt{3^2-2.3.\sqrt{7}+7}+\sqrt{7}\)

\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{7}\)

\(=\left|3-\sqrt{7}\right|+\sqrt{7}\)

\(=3-\sqrt{7}+\sqrt{7}\)

\(=3\)

29 tháng 8 2020

b) Ta có: \(\sqrt{\left|12\sqrt{5}-29\right|}+\sqrt{12\sqrt{5}+29}\)

\(=\sqrt{\left(\sqrt{29-12\sqrt{5}}+\sqrt{12\sqrt{5}+29}\right)^2}\)

\(=\sqrt{29-12\sqrt{5}+2\sqrt{\left(29-12\sqrt{5}\right)\left(12\sqrt{5}+29\right)}+12\sqrt{5}+29}\)

\(=\sqrt{58+2\sqrt{121}}\)

\(=\sqrt{58+2.11}\)

\(=\sqrt{80}=4\sqrt{5}\)

20 tháng 6 2015

Lắm ý thế này giải xong chắc chết vì dài

8 tháng 6 2015

\(B=\sqrt{5}-\sqrt{3-\sqrt{\left(2.\sqrt{5}\right)^2-2.3.2\sqrt{5}+3^2}}\)\(=\sqrt{5}-\sqrt{3-2\sqrt{5}+3}=\sqrt{5}-\sqrt{5-2\sqrt{5}+1}\)\(=\sqrt{5}-\sqrt{5}+1=1\)

18 tháng 8 2015

a)\(\sqrt{\left(\sqrt{20}\right)^2-2.\sqrt{20}.\sqrt{9}+\left(\sqrt{9}\right)^2}=\sqrt{\left(\sqrt{20}-\sqrt{9}\right)^2}=\left|\sqrt{20}-\sqrt{9}\right|=\sqrt{20}-3=2\sqrt{5}-3\)

b)\(\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\left|\sqrt{3}-\sqrt{2}\right|=\sqrt{3}-\sqrt{2}\)

c)\(\sqrt{5-2\sqrt{5}.\sqrt{2}+2}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\left|\sqrt{5}-\sqrt{2}\right|=\sqrt{5}-\sqrt{2}\)

d)\(\sqrt{12+2.\sqrt{12}.\sqrt{5}+5}=\sqrt{\left(\sqrt{12}+\sqrt{5}\right)^2}=\left|\sqrt{12}+\sqrt{5}\right|=\sqrt{12}+\sqrt{5}=2\sqrt{3}+\sqrt{5}\)

e)\(\sqrt{18-2.3\sqrt{2}.1+1}=\sqrt{\left(3\sqrt{2}-1\right)^2}=\left|3\sqrt{2}-1\right|=3\sqrt{2}-1\)

h) \(\sqrt{12+2.\sqrt{12}.\sqrt{9}+9}=\sqrt{\left(\sqrt{12}+\sqrt{9}\right)^2}=\left|\sqrt{12}+\sqrt{9}\right|=\sqrt{12}+\sqrt{9}=2\sqrt{3}+3\)

4 tháng 7 2017

\(A=\sqrt{9-6\sqrt{7}+7}+\sqrt{3-2\sqrt{21}+7}\)

\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

\(=3-\sqrt{7}+\sqrt{7}-\sqrt{3}\)

\(=3-\sqrt{3}\)

4 tháng 7 2017

\(B=\sqrt{25+2\sqrt{75}+3}+\sqrt{16-2\sqrt{48}+3}\)

\(=\sqrt{\left(5+\sqrt{3}\right)^2}+\sqrt{\left(4-\sqrt{3}\right)^2}\)

\(=5+\sqrt{3}+4-\sqrt{3}\)

\(=9\)

5 tháng 7 2018

Căn bậc hai. Căn bậc baà

5 tháng 7 2018

chữ "à" ?

30 tháng 7 2019

Câu a:

\( \sqrt {4 + \sqrt {5\sqrt 3 + 5\sqrt {48 - 10\sqrt {7 + 4\sqrt 3 } } } } \\ = \sqrt {4 + \sqrt {5\sqrt 3 + 5\sqrt {48 - 10\sqrt {{{\left( {2 + \sqrt 3 } \right)}^2}} } } } \\ = \sqrt {4 + \sqrt {5\sqrt 3 + 5\sqrt {48 - 20 - 10\sqrt 3 } } } \\ = \sqrt {4 + \sqrt {5\sqrt 3 + 5\sqrt {28 - 10\sqrt 3 } } } \\ = \sqrt {4 + \sqrt {5\sqrt 3 + 5\sqrt {{{\left( {5 - \sqrt 3 } \right)}^2}} } } \\ = \sqrt {4 + \sqrt {5\sqrt 3 + 25 - 5\sqrt 3 } } \\ = \sqrt {4 + \sqrt {25} } = \sqrt {4 + 5} = \sqrt 9 = 3 \)

30 tháng 7 2019

Câu b:

\( \sqrt {\sqrt {5 - \sqrt {3 - \sqrt {29 - 12\sqrt 5 } } } } \\ = \sqrt {\sqrt 5 - \sqrt {3 - \sqrt {{{\left( {2\sqrt 5 } \right)}^2} - 2.2\sqrt 5 .3 + {3^2}} } } \\ = \sqrt {\sqrt 5 - \sqrt {3 - \sqrt {{{\left( {2\sqrt 5 - 3} \right)}^2}} } } \\ = \sqrt {\sqrt 5 - \sqrt {3 - \left| {2\sqrt 5 - 3} \right|} } \\ = \sqrt {\sqrt 5 - \sqrt {3 - \left( {2\sqrt 5 - 3} \right)} } \\ = \sqrt {\sqrt 5 - \sqrt {3 - 2\sqrt 5 + 3} } \\ = \sqrt {\sqrt 5 - \sqrt {{{\left( {\sqrt 5 - 1} \right)}^2}} } \\ = \sqrt {\sqrt 5 - \sqrt 5 + 1} = \sqrt 1 = 1 \)

13 tháng 8 2017

bài 2 nhé, bài 1 không biết làm.

cách giải: hơi dài nhưng đọc 1 lần để sử dụng cả đời =))

+ bỏ dấu căn bằng cách phân tích biểu thức trong căn thành 1 bình phương

- nhắm đến hằng đẳng thức số 1 và số 2.

+ đưa về giá trị tuyệt đối, xét dấu để phá dấu giá trị tuyệt đối

* nhận xét: +Vì đặc trưng của 2 hđt được đề cập. số hạng không chứa căn sẽ là tổng của 2 bình phương \(\left(A^2+B^2\right)\) số hạng chứa căn sẽ có dạng \(\pm2AB\)

=> ta sẽ phân tích số hạng chứa căn để tìm A và B

+ nhẩm bằng máy tính, tìm 2 số hạng:

thử lần lượt các trường hợp, lấy vd là câu c)

\(2AB=12\sqrt{5}=2\cdot6\sqrt{5}\)

\(\Rightarrow AB=6\sqrt{5}\)

- đầu tiên xét đơn giản với B là căn 5 => A= 6

\(A^2+B^2=36+5=41\) (41 khác 29 => loại)

- xét \(6\sqrt{5}=2\cdot3\sqrt{5}\)

tương ứng A= 2; B = 3 căn 5

\(A^2+B^2=4+45=49\) (loại)

- xét \(6\sqrt{5}=3\cdot2\sqrt{5}\)

Tương ứng A= 3 ; B= 2 căn 5

\(A^2+B^2=9+20=29\) (ơn giời cậu đây rồi!!)

Vì tổng \(A^2+B^2\) là số nguyên nên ta nghĩ đến việc tách 2AB ra các thừa số có bình phương là số nguyên (chứ không nghĩ đến phân số)

+ Tìm được A=3, B=2 căn 5 sau đó viết biểu thức dưới dạng bình phương 1 tổng/hiệu như sau:

\(\sqrt{29-12\sqrt{5}}-\sqrt{29+12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}+3\right)^2}\)

sau đó bạn làm tương tự như 2 câu mẫu bên dưới

* Chú ý nên xếp số lớn hơn là số bị trừ, để khỏi bị nhầm và khỏi mất công xét dấu biểu thức khi phá dấu giá trị tuyệt đối

a) \(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|=3+\sqrt{5}+3-\sqrt{5}=6\)b) \(\sqrt{6+4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|+\left|2-\sqrt{2}\right|=2+\sqrt{2}+2-\sqrt{2}=4\)

22 tháng 8 2018

\(A=\sqrt{13+4\sqrt{10}}=\sqrt{13+2\sqrt{40}}=\sqrt{8+2.\sqrt{5}.\sqrt{8}+5}=\sqrt{\left(\sqrt{8}+\sqrt{5}\right)^2}=\sqrt{8}+\sqrt{5}\)

\(B=\sqrt{46-6\sqrt{5}}=\sqrt{46-2\sqrt{45}}=\sqrt{\left(\sqrt{45}-1\right)^2}=\sqrt{45}-1=3\sqrt{5}-1\)

\(C=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{7}}\)

\(C=-\sqrt{3}-\sqrt{2}+\dfrac{\sqrt{5}+\sqrt{3}}{2}-\dfrac{\sqrt{7}+\sqrt{5}}{2}\)

\(C=-\sqrt{3}-\sqrt{2}+\dfrac{\sqrt{3}-\sqrt{7}}{2}\)

\(C=\dfrac{-2\sqrt{3}-2\sqrt{2}+\sqrt{3}-\sqrt{7}}{2}=\dfrac{-\sqrt{3}-2\sqrt{2}-\sqrt{7}}{2}\)

22 tháng 8 2018

Nga Văn sr thiếu vế :3