Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
Đặt \(n^2+2n+4=a^2\)
\(\Leftrightarrow\left(n+1\right)^2+3=a^2\)
\(\Leftrightarrow a^2-\left(n+1\right)^2=3\)
\(\Leftrightarrow\left(a-n-1\right)\left(a+n+1\right)=3\)
TH1 \(\hept{\begin{cases}a+n+1=3\\a-n-1=1\end{cases}}\)
TH2 : \(\hept{\begin{cases}a+n+1=-3\\a-n-1=-1\end{cases}}\)
TH3 : \(\hept{\begin{cases}a+n+1=-1\\a-n-1=-3\end{cases}}\)
TH4 : \(\hept{\begin{cases}a+n+1=1\\a-n-1=3\end{cases}}\)
Bạn tính ra trong từng TH nhé !
Câu 1 :
Giả sử : \(n^2+2n+4=k^2\left(k\inℤ\right)\)
\(\Rightarrow k^2-\left(n^2+2n+1\right)=3\)
\(\Rightarrow k^2-\left(n+1\right)^2=3\)
\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=3\)
Do k + n + 1 > k - n - 1 ( với k;n thuộc Z )
\(\Rightarrow\hept{\begin{cases}k+n+1=3\\k-n-1=1\end{cases}}\Rightarrow\hept{\begin{cases}k+n=2\\k-n=2\end{cases}}\Rightarrow\hept{\begin{cases}k=2\\n=0\end{cases}}\)
Vậy n = 0
Câu 1. B) m ≠ ±3
Câu 2. B) 3
Câu 3. C) 8cm
Câu 4. C) AB.DF = AC.DE
Câu 5. B) AC = 6cm
không hiểu chỗ nào ib mình giảng
a)
a) n2−3n+5 : n−2 = n - 1 (R=3) . Để phép chia hết nên suy ra: n-1 thuộc Ư(3) . Suy ra : n = { 4 ; -2 ; 0 ; 2 }
Bài 2:
a: \(x^3-\dfrac{1}{4}x=0\)
\(\Leftrightarrow x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)
hay \(x\in\left\{0;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
b: \(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
=>x-5=0
hay x=5
c: \(x^3-13x=0\)
\(\Leftrightarrow x\left(x^2-13\right)=0\)
hay \(x\in\left\{0;-\sqrt{13};\sqrt{13}\right\}\)
d: \(x^2+2x-1=0\)
\(\Leftrightarrow x^2+2x+1=2\)
\(\Leftrightarrow\left(x+1\right)^2=2\)
hay \(x\in\left\{\sqrt{2}-1;-\sqrt{2}-1\right\}\)
1) n²(n²-1)
* vì n² chia 3 dư 0 hoặc 1 nên n² và n²-1 có một số chia hết cho 3
=> n²(n²-1) chia hết cho 3
* n² chia 4 dư 0 hoặc 1 nên n²(n²-1) có một số chia hết cho 4
=> n²(n²-1) chia hết cho 4
vì 3 và 4 là hai số nguyên tố cùng nhau nên A = n²(n²-1) chia hết cho 3.4 = 12