K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

bài 2 phần a

x^3-0,25x = 0

x*(x2 - 0,25)=0

=> TH1: x=0

TH2 : x2 - 0.25=0

(x-0,5)(x+0,5)=0

=> x=0.5

     x=-0.5

Vậy x=0  , x=+ - 5

sai thì thông cảm

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

7 tháng 3 2020

Câu 1 :

Đặt \(n^2+2n+4=a^2\)

\(\Leftrightarrow\left(n+1\right)^2+3=a^2\)

\(\Leftrightarrow a^2-\left(n+1\right)^2=3\)

\(\Leftrightarrow\left(a-n-1\right)\left(a+n+1\right)=3\)

TH1 \(\hept{\begin{cases}a+n+1=3\\a-n-1=1\end{cases}}\)

TH2 : \(\hept{\begin{cases}a+n+1=-3\\a-n-1=-1\end{cases}}\)

TH3 : \(\hept{\begin{cases}a+n+1=-1\\a-n-1=-3\end{cases}}\)

TH4 : \(\hept{\begin{cases}a+n+1=1\\a-n-1=3\end{cases}}\)

Bạn tính ra trong từng TH nhé !

7 tháng 3 2020

Câu 1 :

Giả sử : \(n^2+2n+4=k^2\left(k\inℤ\right)\)

\(\Rightarrow k^2-\left(n^2+2n+1\right)=3\)

\(\Rightarrow k^2-\left(n+1\right)^2=3\)

\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=3\)

Do k + n + 1 > k - n - 1 ( với k;n thuộc Z )

\(\Rightarrow\hept{\begin{cases}k+n+1=3\\k-n-1=1\end{cases}}\Rightarrow\hept{\begin{cases}k+n=2\\k-n=2\end{cases}}\Rightarrow\hept{\begin{cases}k=2\\n=0\end{cases}}\) 

Vậy n = 0 

10 tháng 3 2021

Câu 1. B) m ≠ ±3

Câu 2. B) 3 

Câu 3. C) 8cm

Câu 4. C) AB.DF = AC.DE

Câu 5. B) AC = 6cm

không hiểu chỗ nào ib mình giảng

30 tháng 3 2020

a) 

a)   n23n+:  n2 = n - 1 (R=3) . Để phép chia hết nên suy ra:  n-1 thuộc Ư(3) . Suy ra : n = { 4 ; -2 ; 0 ; 2 }

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)Tính giá trị D = x ^2017 + y^2017 + z^2017Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)bài 3 : Cho a, b, c khác nhau thỏa mãn :\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)Chứng minh : 2 phân...
Đọc tiếp

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị D = x ^2017 + y^2017 + z^2017
Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)
bài 3 : Cho a, b, c khác nhau thỏa mãn :
\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)
Chứng minh : 2 phân thức có giá trị = 1 và 1 phân thức có giá trị = -1
Bài 4 : Cho A = \(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
a, Rút gọn A
b, Cm : Nếu n thuộc Z thì A tối giản
Bài 5 : Cho n thuộc Z, n nhỏ hơn hoặc = 1
CMR : 1^3 + 2^3 + 3^3 +....+ n^3 = \(\frac{n^2\left(n+1\right)^2}{4}\)
Bài 6 : Cho M =\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
N =\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
a, Cm : nếu M = 1 thì N = 0
b, Cm : Nếu N = 0 thì có nhất thiết M = 1 ko ?

0

Bài 2: 

a: \(x^3-\dfrac{1}{4}x=0\)

\(\Leftrightarrow x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)

hay \(x\in\left\{0;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

b: \(x^2-10x=-25\)

\(\Leftrightarrow x^2-10x+25=0\)

\(\Leftrightarrow\left(x-5\right)^2=0\)

=>x-5=0

hay x=5

c: \(x^3-13x=0\)

\(\Leftrightarrow x\left(x^2-13\right)=0\)

hay \(x\in\left\{0;-\sqrt{13};\sqrt{13}\right\}\)

d: \(x^2+2x-1=0\)

\(\Leftrightarrow x^2+2x+1=2\)

\(\Leftrightarrow\left(x+1\right)^2=2\)

hay \(x\in\left\{\sqrt{2}-1;-\sqrt{2}-1\right\}\)

6 tháng 9 2015

1) n²(n²-1)
* vì n² chia 3 dư 0 hoặc 1 nên n² và n²-1 có một số chia hết cho 3
=> n²(n²-1) chia hết cho 3
* n² chia 4 dư 0 hoặc 1 nên n²(n²-1) có một số chia hết cho 4
=> n²(n²-1) chia hết cho 4
vì 3 và 4 là hai số nguyên tố cùng nhau nên A = n²(n²-1) chia hết cho 3.4 = 12