K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

bài 2 phần a

x^3-0,25x = 0

x*(x2 - 0,25)=0

=> TH1: x=0

TH2 : x2 - 0.25=0

(x-0,5)(x+0,5)=0

=> x=0.5

     x=-0.5

Vậy x=0  , x=+ - 5

sai thì thông cảm

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

30 tháng 3 2020

a) 

a)   n23n+:  n2 = n - 1 (R=3) . Để phép chia hết nên suy ra:  n-1 thuộc Ư(3) . Suy ra : n = { 4 ; -2 ; 0 ; 2 }

Bài 2: 

a: \(x^3-\dfrac{1}{4}x=0\)

\(\Leftrightarrow x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)

hay \(x\in\left\{0;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

b: \(x^2-10x=-25\)

\(\Leftrightarrow x^2-10x+25=0\)

\(\Leftrightarrow\left(x-5\right)^2=0\)

=>x-5=0

hay x=5

c: \(x^3-13x=0\)

\(\Leftrightarrow x\left(x^2-13\right)=0\)

hay \(x\in\left\{0;-\sqrt{13};\sqrt{13}\right\}\)

d: \(x^2+2x-1=0\)

\(\Leftrightarrow x^2+2x+1=2\)

\(\Leftrightarrow\left(x+1\right)^2=2\)

hay \(x\in\left\{\sqrt{2}-1;-\sqrt{2}-1\right\}\)

26 tháng 12 2018

bucminh Giúp mik vs mn ơi!

26 tháng 12 2018

Câu 1:a. = x^4+x^3+3x^2+2x+2 b= -12

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)Tính giá trị D = x ^2017 + y^2017 + z^2017Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)bài 3 : Cho a, b, c khác nhau thỏa mãn :\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)Chứng minh : 2 phân...
Đọc tiếp

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị D = x ^2017 + y^2017 + z^2017
Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)
bài 3 : Cho a, b, c khác nhau thỏa mãn :
\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)
Chứng minh : 2 phân thức có giá trị = 1 và 1 phân thức có giá trị = -1
Bài 4 : Cho A = \(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
a, Rút gọn A
b, Cm : Nếu n thuộc Z thì A tối giản
Bài 5 : Cho n thuộc Z, n nhỏ hơn hoặc = 1
CMR : 1^3 + 2^3 + 3^3 +....+ n^3 = \(\frac{n^2\left(n+1\right)^2}{4}\)
Bài 6 : Cho M =\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
N =\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
a, Cm : nếu M = 1 thì N = 0
b, Cm : Nếu N = 0 thì có nhất thiết M = 1 ko ?

0
31 tháng 10 2017

a) \(3x^2-3y^2-12x+12y\)

\(=\left(3x^2-3y^2\right)-\left(12x-12y\right)\)

\(=3\left(x^2-y^2\right)-12\left(x-y\right)\)

\(=3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-3y-12\right)\)

\(=\left(x-y\right).3.\left(x-y-4\right)\)

b) \(4x^3+4xy^2+8x^2y-16x\)

\(=\left(4x^3-16x\right)+\left(4xy^2+8x^2y\right)\)

\(=4x\left(x^2-4\right)+4xy\left(y+2x\right)\)

28 tháng 11 2017

c)    \(x^4-5x^2+4\)

\(=x^4-x^2-4x^2+4\)

\(=\left(x^4-x^2\right)-\left(4x^2-4\right)\)

\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)

\(=\left(x^2-4\right)\left(x^2-1\right)\) 

\(=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

31 tháng 10 2017

Bài 1:

a)3x2 - 3y2 - 12x +12y=3(x2-y2)-12(x-y)=3(x-y)(x+y)-12(x-y)=3(x-y)(x+y-4)

b) 4x3 + 4xy2 + 8x2y - 16x=4x(x-4)+4xy(y+2x)=4x(x-4+y2+2xy)

c) x4 - 5x2 + 4=x4-x2-4x2+4=x2(x2-1)-4(x2-1)=(x2-1)(x2-4)=(x-1)(x+1)(x-2)(x+2)

d) x3 - 2x2 + 6x - 5=x3-x2-(x2-6x+5)=x2(x-1)-(x-1)(x-5)=(x-1)(x2-x+5)

e) x2 - 4x +3=x2-x-3x+3=x(x-1)-3(x-1)=(x-1)(x-3)

f ) 2x2 + 3x - 5=2x2-2+3x-3=2(x2-1)+3(x-1)=2(x-1)(x+1)+3(x-1)=(x-1)(2x+1)

AH
Akai Haruma
Giáo viên
28 tháng 8 2020

Đề này chép có đúng không thế bạn? Chứ mình thấy hơi sai sai.

AH
Akai Haruma
Giáo viên
28 tháng 8 2020

Bạn cần viết cụ thể hơn: Số nguyên dương $x,y$ và số nguyên tố $p$ thỏa mãn. $p^x-y^4=4$

Lời giải:

Nếu $p=2$ thì: $y^4=2^x-4\vdots 2$

$\Rightarrow y\vdots 2$

$\Rightarrow 2^x-4=y^4\vdots 8$

$\Rightarrow 2^x$ không chia hết cho $8$

$\Rightarrow x< 3$. Thử $x=1; 2$ ta không thu được $y$ nguyên dương thỏa mãn (loại)

Nếu $p\neq 2$ ($p$ lẻ)

$p^x=y^4+4=(y^2+2)^2-(2y)^2=(y^2+2-2y)(y^2+2+2y)$

Do đó tồn tại $m,n\in\mathbb{N}$ sao cho:

$y^2+2-2y=p^m; y^2+2+2y=p^n$ và $m+n=x; m< n$

$\Rightarrow 4y=p^n-p^m$

Giả sử $m,n\geq 1$ thì $4y\vdots p\Rightarrow y\vdots p$ (do $p$ lẻ)

$\Rightarrow 4=p^x-y^4\vdots p$ (vô lý)

Do đó $m=0$. Khi đó: $y^2+2-2y=p^0=1$

$\Leftrightarrow y^2-2y+1=0\Rightarrow y=1$

$\Rightarrow p^x=5\Rightarrow p=5; x=1$

Vậy........