Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
a) n2−3n+5 : n−2 = n - 1 (R=3) . Để phép chia hết nên suy ra: n-1 thuộc Ư(3) . Suy ra : n = { 4 ; -2 ; 0 ; 2 }
Bài 2:
a: \(x^3-\dfrac{1}{4}x=0\)
\(\Leftrightarrow x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)
hay \(x\in\left\{0;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
b: \(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
=>x-5=0
hay x=5
c: \(x^3-13x=0\)
\(\Leftrightarrow x\left(x^2-13\right)=0\)
hay \(x\in\left\{0;-\sqrt{13};\sqrt{13}\right\}\)
d: \(x^2+2x-1=0\)
\(\Leftrightarrow x^2+2x+1=2\)
\(\Leftrightarrow\left(x+1\right)^2=2\)
hay \(x\in\left\{\sqrt{2}-1;-\sqrt{2}-1\right\}\)
a) \(3x^2-3y^2-12x+12y\)
\(=\left(3x^2-3y^2\right)-\left(12x-12y\right)\)
\(=3\left(x^2-y^2\right)-12\left(x-y\right)\)
\(=3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-3y-12\right)\)
\(=\left(x-y\right).3.\left(x-y-4\right)\)
b) \(4x^3+4xy^2+8x^2y-16x\)
\(=\left(4x^3-16x\right)+\left(4xy^2+8x^2y\right)\)
\(=4x\left(x^2-4\right)+4xy\left(y+2x\right)\)
c) \(x^4-5x^2+4\)
\(=x^4-x^2-4x^2+4\)
\(=\left(x^4-x^2\right)-\left(4x^2-4\right)\)
\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-4\right)\left(x^2-1\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
Bài 1:
a)3x2 - 3y2 - 12x +12y=3(x2-y2)-12(x-y)=3(x-y)(x+y)-12(x-y)=3(x-y)(x+y-4)
b) 4x3 + 4xy2 + 8x2y - 16x=4x(x-4)+4xy(y+2x)=4x(x-4+y2+2xy)
c) x4 - 5x2 + 4=x4-x2-4x2+4=x2(x2-1)-4(x2-1)=(x2-1)(x2-4)=(x-1)(x+1)(x-2)(x+2)
d) x3 - 2x2 + 6x - 5=x3-x2-(x2-6x+5)=x2(x-1)-(x-1)(x-5)=(x-1)(x2-x+5)
e) x2 - 4x +3=x2-x-3x+3=x(x-1)-3(x-1)=(x-1)(x-3)
f ) 2x2 + 3x - 5=2x2-2+3x-3=2(x2-1)+3(x-1)=2(x-1)(x+1)+3(x-1)=(x-1)(2x+1)
Đề này chép có đúng không thế bạn? Chứ mình thấy hơi sai sai.
Bạn cần viết cụ thể hơn: Số nguyên dương $x,y$ và số nguyên tố $p$ thỏa mãn. $p^x-y^4=4$
Lời giải:
Nếu $p=2$ thì: $y^4=2^x-4\vdots 2$
$\Rightarrow y\vdots 2$
$\Rightarrow 2^x-4=y^4\vdots 8$
$\Rightarrow 2^x$ không chia hết cho $8$
$\Rightarrow x< 3$. Thử $x=1; 2$ ta không thu được $y$ nguyên dương thỏa mãn (loại)
Nếu $p\neq 2$ ($p$ lẻ)
$p^x=y^4+4=(y^2+2)^2-(2y)^2=(y^2+2-2y)(y^2+2+2y)$
Do đó tồn tại $m,n\in\mathbb{N}$ sao cho:
$y^2+2-2y=p^m; y^2+2+2y=p^n$ và $m+n=x; m< n$
$\Rightarrow 4y=p^n-p^m$
Giả sử $m,n\geq 1$ thì $4y\vdots p\Rightarrow y\vdots p$ (do $p$ lẻ)
$\Rightarrow 4=p^x-y^4\vdots p$ (vô lý)
Do đó $m=0$. Khi đó: $y^2+2-2y=p^0=1$
$\Leftrightarrow y^2-2y+1=0\Rightarrow y=1$
$\Rightarrow p^x=5\Rightarrow p=5; x=1$
Vậy........