Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{2}x-\frac{2}{5}=\frac{1}{3}x-\frac{1}{4}\)
=> \(\frac{3}{2}x-\frac{2}{5}-\frac{1}{3}x+\frac{1}{4}=0\)
=> \(\left(\frac{3}{2}-\frac{1}{3}\right)x+\left(-\frac{2}{5}+\frac{1}{4}\right)=0\)
=> \(\frac{7}{6}x-\frac{3}{20}=0\)
=> \(\frac{7}{6}x=\frac{3}{20}\)
=> \(x=\frac{3}{20}:\frac{7}{6}=\frac{3}{20}\cdot\frac{6}{7}=\frac{9}{70}\)
b) \(2x-\frac{2}{3}=7x+\frac{2}{3}-1\)
=> \(2x-\frac{2}{3}=7x-\frac{1}{3}\)
=> \(2x-\frac{2}{3}-7x+\frac{1}{3}=0\)
=> (2x - 7x) + (-2/3 + 1/3) = 0
=> -5x - 1/3 = 0
=> -5x = 1/3
=> x = -1/15
a) B = | 2x - 3 | - 7
| 2x - 3 | ≥ 0 ∀ x => | 2x - 3 | - 7 ≥ -7
Đẳng thức xảy ra <=> 2x - 3 = 0 => x = 3/2
=> MinB = -7 <=> x = 3/2
C = | x - 1 | + | x - 3 |
= | x - 1 | + | -( x - 3 ) |
= | x - 1 | + | 3 - x | ≥ | x - 1 + 3 - x | = | 2 | = 2
Đẳng thức xảy ra khi ab ≥ 0
=> ( x - 1 )( 3 - x ) ≥ 0
=> 1 ≤ x ≤ 3
=> MinC = 2 <=> 1 ≤ x ≤ 3
b) M = 5 - | x - 1 |
- | x - 1 | ≤ 0 ∀ x => 5 - | x - 1 | ≤ 5
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MaxM = 5 <=> x = 1
N = 7 - | 2x - 1 |
- | 2x - 1 | ≤ 0 ∀ x => 7 - | 2x - 1 | ≤ 7
Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2
=> MaxN = 7 <=> x = 1/2
a) \(||2x-3|-4x|=5\)
TH1: \(|2x-3|-4x=5\)
\(\Leftrightarrow|2x-3|=5+4x\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=5+4x\\2x-3=-5-4x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-4x=5+3\\2x+4x=-5+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-2x=8\\6x=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{-1}{3}\end{cases}}\)
TH2: \(|2x-3|-4x=-5\)
\(\Leftrightarrow|2x-3|=-5-4x\)<0 ( loại )
Vậy \(x\in\left\{-4;\frac{-1}{3}\right\}\)
Câu 1 : Ta có :
\(\hept{\begin{cases}\left|x+y-5\right|\ge0\forall x;y\\\left|2x-y+8\right|\ge0\forall x;y\end{cases}\Rightarrow\left|x+y-5\right|+\left|2x-y+8\right|\ge0\forall x;y}\)
Dấu \("="\)xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left|x+y-5\right|=0\\\left|2x-y+8\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y-5=0\\2x-y+8=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y=5\\2x-y=-8\end{cases}}}\)
\(\Leftrightarrow x+y+2x-y=5+-8\)
\(\Leftrightarrow3x=-3\)
\(\Leftrightarrow x=-1\)
Mà \(x+y=5\Rightarrow y=5-\left(-1\right)=6\)
Vậy \(x=-1;y=6\)
Câu 2 : Ta có :
\(\left|x\right|\ge0\forall x;\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|+\left|x+2\right|\ge0\forall x\)
Dấu \("="\)xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left|x\right|=0\\\left|x+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-2\end{cases}\Leftrightarrow}}\)Loại
Vậy không có TH x thỏa mãn
Câu 3 : Ta có :
\(\left|-y\right|\ge0\forall y\)
\(\Rightarrow\frac{-2}{5}-\left|-y\right|\le-\frac{2}{5}\)
Mà : \(\left|\frac{1}{2}-\frac{1}{3}+x\right|\ge0\forall x\)
\(\Rightarrow\left|\frac{1}{2}-\frac{1}{3}+x\right|=-\frac{2}{5}-\left|-y\right|\)( vô lý )
Vậy không có TH x thỏa mãn
Giải :
\(\frac{x+1}{x-2}=\frac{3}{4}\)
\(\Rightarrow4.\left(x-1\right)=3.\left(x-2\right)\)
\(\Rightarrow4x-4=3x-6\)
\(\Rightarrow4x-4-3x+6=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)Không thỏa mãn => Không có giá trị x thỏa mãn đề bài
\(\frac{2x-3}{x+1}=\frac{4}{7}\)
\(\Rightarrow7.\left(2x-3\right)=4.\left(x+1\right)\)
\(\Rightarrow14x-21-4x-4=0\)
\(\Rightarrow10x-25=0\)
\(\Rightarrow10x=25\)
\(\Rightarrow x=\frac{25}{10}=\frac{5}{2}\)
Giá trị trên thỏa mãn đầu bài
Các phần khác em làm tương tự nha