K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
14 tháng 7 2021

\(D=\frac{x^2-2x+1}{x+1}=\frac{x^2+x-3x-3+4}{x+1}=\frac{\left(x-3\right)\left(x+1\right)+4}{x+1}=x-3+\frac{4}{x+1}\inℤ\)

\(\Rightarrow\frac{4}{x+1}\inℤ\)mà \(x\inℤ\)nên \(\left(x+1\right)\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)

\(\Leftrightarrow x\in\left\{-5,-3,-2,0,1,3\right\}\).

14 tháng 7 2021

thank nha

26 tháng 4 2021

ta có \(\frac{6x-5}{1-2x}=\frac{6x-3-2}{1-2x}=\frac{-3\left(1-2x\right)}{1-2x}-\frac{2}{1-2x}\)

\(=-3-\frac{2}{1-2x}\)

ta có -3 thuộc Z suy ra \(\frac{2}{1-2x}\)phải thuộc Z

suy ra 1-2x thuộc Ư(2)=(1,-1,2,-2)

với 1-2x=1

x=0

1-2x=-1

x=1

1-2x=2

x=-\(\frac{1}{2}\)(loại)

1-2x=-2

x=\(\frac{3}{2}\)(loại)

vậy x thuộc (0,1) thì D thuộc Z

26 tháng 4 2021

THANKS DẠ LÝ NHA

9 tháng 11 2016

Câu 1:

Ta thấy:

\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)

\(\left|2y+1\right|\ge0\)

\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)

\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)

hay \(A\ge-2,5\)

Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)

Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)

20 tháng 11 2016

Cảm ơn bạn nhiều nhé!

30 tháng 4 2019

Câu 1 xem lại đề :v

2, \(P\left(x\right)=2x+a-1.\)

\(2.0+a-1=0\)

\(a-1=0\Leftrightarrow a=1\)

7 tháng 6 2018

1.

bạn xem lại đề nhé: nếu đúng thì mình nhẩm được n = 0

2.

  X = 2/a để X thuộc N thì a phải thuộc N và là ước của 2

ước tự nhiên của của 2 = { 1; 2}

Vậy a = 1 hoặc a = 2

3.

Y = -3/a  để Y là số âm thì a phải là một số dương (khác 0)

4. \(Z=\frac{a-3}{2}\) đê Z âm thì tử là a - 3 phải âm vì mẫu là một số dương

\(a-3\le0\Rightarrow a\le3\)

5

.\(T=\frac{a+1}{a-2}\) để T dương thì tử và mẫu phải cùng dấu

TH1: a+1 < 0   => a < -1

         a-2 < 0  => a < 2

       =====> a <-1

TH2: 

a+1 > 0   => a > -1

         a-2 > 0  => a > 2

       =====> a > 2

vậy a < -1 hoặc a > 2 thì T là một số dương

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
13 tháng 11 2016

a) Đặt A=\(\frac{x^2-1}{x^2}\)

Ta có:

\(\Rightarrow A=\frac{x^2}{x^2}-\frac{1}{x^2}\)

\(\Rightarrow A=1-\frac{1}{x^2}\)

\(\Rightarrow x\in Z\) để thỏa mãn A<0

 

 

17 tháng 11 2016

b)\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

=>(a^2+b^2)*cd=(c^2+d^2)*ab

a^2cd+b^2cd=abc^c+abd^2

a^2cd+b^2cd-c^2ab-d^2ab=0

(a^2cd-abd^2+(b^2cd-abc^2)=0

ad(ac-bd)-bc(ac-bd)=0

(ad-bc)(ac-bd)=0

=>ad-bc=0 hoặc ac-bd=0

ad=bc ac=bd

=>a/b=c/d hoặc a/d=b/c