Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{6\frac{1}{4}}{x}=\frac{x}{1,96}\)
\(\left(=\right)\frac{\frac{25}{4}}{x}=\frac{x}{1,96}\)
\(\left(=\right)x^2=12,25\)
\(=>\orbr{\begin{cases}x=3,5\\x=-3,5\end{cases}}\)
học tốt
Ta có:
\(\left(\frac{3}{5}-x\right).\left(\frac{2}{5}-x\right)>0\)
\(\Rightarrow\frac{3}{5}-x>0\)và \(\frac{2}{5}-x>0\)
\(\Rightarrow x>\frac{3}{5}\)và \(x>\frac{2}{5}\)
MÌNH NGHĨ VẬY, NHỚ KICK ĐÚNG CHO MÌNH NHA.......( ^ _ ^ )
\(\left(\frac{3}{5}-x\right)\left(\frac{2}{5}-x\right)>0\)
\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}\frac{3}{5}-x>0\\\frac{2}{5}-x>0\end{cases}}\\\orbr{\begin{cases}\frac{3}{5}-x< 0\\\frac{3}{5}-x< 0\end{cases}}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}x< \frac{3}{5}\\x< \frac{2}{5}\end{cases}}\\\orbr{\begin{cases}x>\frac{3}{5}\\x>\frac{3}{5}\end{cases}}\end{cases}}\)
Cho x=2018\(\Rightarrow2f\left(2018\right)+f\left(\frac{1}{2018}\right)=2018\) (1)
Cho x=\(\frac{1}{2018}\)\(\Rightarrow2f\left(\frac{1}{2018}\right)+f\left(\frac{1}{\frac{1}{2018}}\right)=\frac{1}{2018}\Rightarrow2f\left(\frac{1}{2018}\right)+f\left(2018\right)=\frac{1}{2018}\) (2)
Lấy (1) x 2 - (2)\(\Rightarrow4f\left(2018\right)+2f\left(\frac{1}{2018}\right)-2f\left(\frac{1}{2018}\right)-f\left(2018\right)=2018-\frac{1}{2018}\)
\(\Rightarrow3f\left(2018\right)=\frac{4072323}{2018}\Rightarrow f\left(2018\right)=\frac{4072323}{6054}\)
a)
- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3
=> A lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0
=> x + 3 = 0
x = -3
Vậy..........
b)
Ta có: B lớn hơn hoặc = / x - 1 / + / x - 3 / = / x - 1 / + / 3 - x /
Mà / x - 1 / + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x / = /2/ = 2
=> B lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0. (1)
Giải (1) được x = 2 TM.
Vậy min B = 2 <=> x=2.
*\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(M=6x^2+9xy-y^2-\left(5x^2-2xy\right)\)
\(M=6x^2+9xy-y^2-5x^2+2xy\)
\(M=\left(6-5\right)x^2+\left(9+2\right)xy-y^2\)
\(M=x^2+11xy-y^2\)
* \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)
Ta có : \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\forall x\\\left(3y+4\right)^{2020}\ge0\forall y\end{cases}\Rightarrow}\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\forall x,y\)
Mà đề cho \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)
=> \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\)
=> \(\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)
Thay x = 5/2 ; y = -4/3 vào M ta được :
\(M=\left(\frac{5}{2}\right)^2+11\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)
\(M=\frac{25}{4}+\frac{-110}{3}-\frac{16}{9}\)
\(M=\frac{-1159}{36}\)
Vậy giá trị của M = -1159/36 khi x = 5/2 ; y = -4/3
Không chắc nha
Câu 1 đề sai
Câu 2: Ta có:\(8^7-2^{18}\)
\(=\left(2^3\right)^7-2^{18}\)
\(=2^{3.7}-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{17}\left(2^4-2\right)\)
\(=2^{17}.14⋮14\)
Nên \(8^7-2^{18}⋮14\)
Vậy \(8^7-2^{18}⋮14\)
Cảm ơn anh Incursion_03 đã nhắc nhở nha.
Các bạn cho mình sửa đề chút ạ :
\(\frac{a-b+c}{a+2b-c}\)
Bài 1: gọi 3 số cần tìm là a;b;c
Theo đề bài a.b.c=5(a+b+c). Vế phải chia hết cho 5 nên a.b.c chia hết cho 5 => trong 3 số a;b;c có ít nhất 1 số chia hết cho 5
Giả sử c là số chia hết cho 5 và c là 1 số nguyên tố => c=5
=> a.b.5=5(a+b+5)=> a.b=a+b+5=> a.b-a=b+5 => a(b-1)=(b-1)+6 => a = 1+6/(b-1)
Vì a;b là các số nguyên => để a là số nguyên thì b-1 phải là ước của 6, do các số nguyên tố đều lớn hơn 1
=> b-1={1; 2;3;6}=> b={2;3;4;7} do b là số nguyên tố nên b=4 loại => b={2;3;7}
Thay vào biểu thức tính a => a={7; 4; 2} do a là số nguyên tố nên a=4 loại => b=3 loại
Vậy 3 số cần tìm là 2;5;7
Thử: 2.5.7=70; 5(2+5+7)=70
\(\frac{3,5}{-1,5}=\frac{x}{7}\)
\(\Rightarrow x.\left(-1,5\right)=3,5.7\)
\(\Rightarrow x.\left(-1,5\right)=24,5\)
\(\Rightarrow x=24,5\div\left(-1,5\right)\)
\(\Rightarrow x=\frac{-49}{3}\)
\(\frac{3,5}{-1,5}=\frac{x}{7}\)
=> 3,5 . 7 = x . ( -1,5 )
=> 24,5 = x . ( - 1,5 )
=> x = \(\frac{-49}{3}\)