K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

ĐK : \(y\ne2x,a\ne-b\)

\(A=\frac{ac+bx+ax+bc}{ay+2bx+2ax+by}\)

\(=\frac{\left(ac+ax\right)+\left(bx+bc\right)}{\left(ay+by\right)+\left(2ax+2bx\right)}\)

\(=\frac{a\left(c+x\right)+b\left(c+x\right)}{y\left(a+b\right)+2x\left(a+b\right)}\)

\(=\frac{\left(c+x\right)\left(a+b\right)}{\left(a+b\right)\left(y+2x\right)}\)

\(=\frac{c+x}{y+2x}\) không phụ thuộc vào \(a,b\) ( đpcm )

27 tháng 10 2016

\(A=\frac{ac+bx+ax+bc}{ay+2bx+2ax+by}=\frac{a\left(c+x\right)+b\left(c+x\right)}{a\left(y+2x\right)+b\left(y+2x\right)}=\frac{\left(c+x\right)\left(a+b\right)}{\left(y+2x\right)\left(a+b\right)}\)

Do \(a\ne-b\Rightarrow a+b\ne0\Rightarrow\)\(A=\frac{c+x}{y+2x}\), giá trị không phụ thuộc vào a; b (đpcm)

30 tháng 10 2016

Xét 2 tam giác vuông MAC và CBN có: AM=BC ; AC=BN
=> 2 tam giác bằng nhau ( 2 cgv) => MC=CN
Ta có: Ax // By ( cùng vuông góc với AB) => AM' // BN.

Mà AM'=BN => AM'BN là hình bình hành => AN=BM'
Ta có: Ax // By ( cùng vuông góc với AB) => AM // BN'.

Mà AM=BN' => AMBN' là hình bình hành => AN’ = BM .
Vì AM'BN là hình bình hành (cmt) => AN // BM’
AMBN' là hình bình hành(cmt)=>AN’ // BM
b/ Vì AM'BN là hình bình hành (cmt) =>M'N cắt AB tại trung điểm AB
AMBN' là hình bình hành(cmt)=> MN' cắt AB tại trung điểm AB khi đó M'N cắt MN' tại trung điểm AB.

1 tháng 1 2016

ko giai dc nhieu qua voi lại mk ko gioi hih

16 tháng 7 2016

a/ \(ab-2b-3a+6=\left(ab-2b\right)-\left(3a-6\right)=b\left(a-2\right)-3\left(a-2\right)=\left(a-2\right)\left(b-3\right)\)

b/ \(ax-by-ay+bx==\left(ax+bx\right)-\left(by+ay\right)=x\left(a+b\right)-y\left(b+a\right)=\left(a+b\right)\left(x-y\right)\)

c/ \(ax+by-ay-bx=\left(ax-ay\right)+\left(by-bx\right)=a\left(x-y\right)+b\left(y-x\right)=a\left(x-y\right)-b\left(x-y\right)=\left(x-y\right)\left(a-b\right)\)

d/ \(a^2-\left(b+c\right)a+bc=a^2-ab-ac+bc=\left(a^2-ac\right)+\left(ab-bc\right)=a\left(a-c\right)+b\left(a-c\right)=\left(a-c\right)\left(a+b\right)\)e/ \(\left(3a-2\right)\left(4a-3\right)-\left(2-3a\right)\left(3a+1\right)=\left(3a-2\right)\left(4a-3\right)+\left(3a-2\right)\left(3a+1\right)=\left(3a-2\right)\left(4a-3+3a+1\right)=\left(3a-2\right)\left(7a-2\right)\)

f/ \(ax+ay+az-bx-by-bz-x-y-z=\left(ax+ay+az\right)-\left(bx+by+bz\right)-\left(x+y+z\right)\)

\(=a\left(x+y+z\right)-b\left(x+y+z\right)-\left(x+y+z\right)=\left(x+y+z\right)\left(a-b-1\right)\)