K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

vcl

17 tháng 3 2020

a) Xét ΔOAHΔOAH và ΔOBHΔOBH ta có:

            OA = OB (theo giả thiết)

            HA = HB (H là trung điểm AB)

            OH chung

⇒ΔOAH=ΔOBH(c−c−c)⇒ΔOAH=ΔOBH(c−c−c)

b) Ta có: ΔOAH=ΔOBHΔOAH=ΔOBH (chứng minh trên)

⇒∠AOH=∠BOH⇒∠AOH=∠BOH ( 2 góc tương ứng bằng nhau)

Hay ∠AOC=∠BOC∠AOC=∠BOC

Xét ΔOACΔOAC và ΔOBCΔOBC ta có:

      OA = OB (theo giả thiết)

      OC chung

      ∠AOC=∠BOC∠AOC=∠BOC

⇒ΔOAC=ΔOBC(c−g−c)⇒ΔOAC=ΔOBC(c−g−c)

⇒∠OAC=∠OBC⇒∠OAC=∠OBC(2 góc tương ứng)

Mà ∠OAC∠OAC= 900  nên ∠OBC∠OBC = 900

⇒CB⊥OB⇒CB⊥OB( điều phải chứng minh)

c) Ta có: ∠AOC=∠BOC∠AOC=∠BOC (chứng minh trên)                    (1)

Xét 2 tam giác vuông MIO và MIH ta có:

      MI chung

      IO = IH (Vì I là trung điểm của OH)

⇒ΔMIO=ΔMIH⇒ΔMIO=ΔMIH (Cạnh góc vuông – cạnh góc vuông)

⇒∠MOI=∠MHI⇒∠MOI=∠MHI (2 góc tương ứng)

Hay∠AOC=∠MHIHay∠AOC=∠MHI                        (2)

Từ (1) và (2) ta có: ∠BOC=∠MHI∠BOC=∠MHI (cặp góc ở vị trí so le trong)

⇒MH//OB⇒MH//OB                             (*)

Lại có:

HK⊥BCOB⊥BC}⇒HK//OBHK⊥BCOB⊥BC}⇒HK//OB (Quan hệ giữa tính vuông góc và tính song song của ba đường thẳng) (**)

Từ (*) và (**) ta có: MH và HK cùng thuộc một đường thẳng song song với OB.

Suy ra M, H, K thẳng hàng (điều phải chứng minh)

17 tháng 3 2020

x O y A B H C

a) Xét tam giác AHO và tam giác BHO

có OH chung

HA=HB (GT)

OA=OB (GT)

suy ra tam giác AHO = tam giác BHO (c.c.c) (1)

b) Từ (1) suy ra góc AOC = góc BOC

Xét tam giác AOC và tam giác BOC có 

OC chung

góc AOC = góc BOC

OA=OB (GT)

suy ra tam giác AOC = tam giác BOC  (c.g.c)

suy ra góc OAC = góc OBC (hai góc tương ứng)

mà góc OAC =900

suy ra góc OBC = 900

suy ra CB vuông góc với OB tại B