Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1.
Cơ năng:
\(W=\dfrac{1}{2}mv^2+mgh=\dfrac{1}{2}\cdot m\cdot6^2+m\cdot10\cdot0=18m\left(J\right)\)
Tại độ cao max có cơ năng: \(W'=mgh_{max}=10mh_{max}\left(J\right)\)
Bảo toàn cơ năng: \(W=W'\)
\(\Rightarrow18m=10mh_{max}\)
\(\Rightarrow h_{max}=1,8m\)
Câu 2.
Cơ năng vật:
\(W=\dfrac{1}{2}mv^2+mgz=\dfrac{1}{2}\cdot m\cdot0^2+10m\cdot20=200m\left(J\right)\)
Tại một điểm trên mặt đất vật có cơ năng \(\left(z=0m\right)\):
\(W'=\dfrac{1}{2}mv'^2\)
Bảo toàn cơ năng: \(W=W'\)\(\Rightarrow200m=\dfrac{1}{2}mv'^2\)
Vận tốc vật khi vừa chạm đất:
\(v'=\sqrt{2\cdot200}=20m\)/s
bài này dễ :D chọn gốc thế năng tại mặt đất
a) Dễ chứng minh được: \(h_{max}=2+\dfrac{v_0^2}{2g}=22\left(m\right)\) ( có thể chứng minh theo ném thẳng đứng hoặc bảo toàn tùy bạn )
b) Bảo toàn cơ năng: ( Tại vị trí ném và tại vị trí cách mặt đât 50m )
\(W_1=W_2\Leftrightarrow\dfrac{1}{2}mv_1^2+mgz_1=\dfrac{1}{2}mv_2^2+mgz_2\) biến đổi rút gọn đc m thay số dễ tính được v2=...... :3 tự tính dùm mình
a)
Cơ năng tại O (vị trí ném): \(W_o=\dfrac{1}{2}mv_o^2+mgz_o\)
Cơ năng tại B (mặt đất): \(W_B=\dfrac{1}{2}mv_B^2\)
Áp dụng định luật bảo toàn cơ năng tại O và A ta có:
\(W_O=W_B\Leftrightarrow\) \(\dfrac{1}{2}mv_O^2+mgz_o=\dfrac{1}{2}mv_B^2\Leftrightarrow v_O^2=2gh\Rightarrow h=\dfrac{v_B^2-v_O^2}{2g}=25m\)
b) Khi đạt độ cao cực đại thì vtoc vật = 0
\(\Leftrightarrow\dfrac{1}{2}mv_B^2=mgh_{cđ}\Leftrightarrow h_{cđ}=\dfrac{v_B^2}{2g}=45m\)
c) \(W_đ=W_t\Leftrightarrow W_đ=\dfrac{1}{2}W_B\Leftrightarrow\dfrac{1}{2}mv^2=\dfrac{1}{2}.\dfrac{1}{2}mv_B^2\Leftrightarrow v=10\sqrt{2}\left(\dfrac{m}{s}\right)\)
1.ta có V^2-Vo^2=2as ( vs a=-g vì cđ ném lên) =>s=(-100)/-20=5m
2. viết pt2niuton .chọn chiều hướng nên là chiều+ :<=>P+Fc=ma(pt vecto)
chiếu + =>-p-f=ma <=>-1.05g=a =>a=-10.5
ta có V^2-Vo^2=2as =>s =-Vo^2/2a =>s=4.7619m
vật cđ xuống =>pt2niuron:P+Fc=ma ( chọn chiều + là chiều hướng xuống)
chiếu +:p-f=ma<=>0.95g=a =>a=9.5
V^2-Vo^2=2as =>V=\(\sqrt{2as}\) =>V=9.51
Độ cao cực đại:
\(mgz_{max}=mgz_1+\dfrac{1}{2}m\upsilon^2\Rightarrow z_{max}=z+\dfrac{\upsilon^2}{2g}=20\left(m\right)\)