K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Trong tứ giác \(ABCD\), tổng các góc bằng \(360^\circ \) nên ta có:

\(\begin{array}{l}x + 2x + 3x + 4x = 360^\circ \\10x = 360^\circ \\x = 360^\circ :10\\x = 36^\circ \end{array}\)

Suy ra:

\(\widehat A = 36^\circ ;\;\widehat B = 72^\circ ;\;\widehat C = 108^\circ ;\;\widehat D = 144^\circ \)

19 tháng 8 2017

Theo bài ra ta có: \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\widehat{\frac{D}{4}}\) 
áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\frac{360^0}{10}=36\)
\(\Rightarrow\frac{\widehat{A}}{1}=36\Rightarrow\widehat{A}=36.1=36^0\)
\(\Rightarrow\frac{\widehat{B}}{2}=36\Rightarrow\widehat{B}=36.2=72^0\)
\(\Rightarrow\frac{\widehat{C}}{3}=36\Rightarrow\widehat{C}=36.3=108^0\)
\(\Rightarrow\frac{\widehat{D}}{4}=36\Rightarrow\widehat{D}=36.4=144^0\)

11 tháng 6 2017

Tứ giác ABCD có: ( ko bik ghi góc nên ko ghi nha )

A + B + C + D = 3600 ( Tổng 4 góc của tứ giác )

A + B = 3600 - ( C + D )

A + B = 3600 - ( 600 + 800 )

A + B = 2200

A = [ ( A + B ) + ( A - B ) ] : 2 = ( 2200 + 100 ) : 2 = 1150

A - B = 100

→ B = A - 100 = 1150 -100 = 1050.

23 tháng 8 2017

TA CÓ : 

\(\widehat{C}=2\widehat{D}\) \(\Rightarrow\widehat{D}=\frac{1}{2}\widehat{C}\)

\(\widehat{B}=2\widehat{C}\)

=>  \(\widehat{A}=\widehat{B}+\widehat{D}=2\widehat{C}+\frac{1}{2}\widehat{C}=\frac{5}{2}.\widehat{C}\)

Mặt khác  vì ABCD là 1 tứ giác nên  \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

hay  \(\frac{5}{2}.\widehat{C}+2\widehat{C}+\widehat{C}+\frac{1}{2}.\widehat{C}=6\widehat{C}=360^o\)

=>  \(\widehat{C}=60^o\)=> \(\widehat{B}=2.\widehat{C}=60^o.2=120^o\) ;  \(\widehat{A}=\frac{5}{2}.\widehat{C}=\frac{5}{2}.60^o=150^o\);\(\widehat{D}=\frac{1}{2}.60^o=30^o\)

Gọi góc ngoài đỉnh B là x

Ta có:

$\widehat {B} + x = 180^0 $

`=>`$ \widehat {B} + 110^0 = 180^0$

`=>` $\widehat {B} = 70^0$

Xét tứ giác ABCD:

$\widehat {A} + \widehat {B} + \widehat {C} + \widehat {D}= 360^0$

`=>` $100^0 + 70^0 + 75^0 + \widehat {D} = 360^0$

`=>` $\widehat {D} = 115^0$

Vậy, $\widehat {D} = 115^0.$

góc B=180-110=70 độ

góc D=360-100-70-75=115 độ

11 tháng 8 2017

Ta có:

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^{0}\)(Định lí tổng các góc trong tứ giác)

\(\Rightarrow\)\(\widehat{D}=360^{0}-(\widehat{A}+\widehat{B}+\widehat{C})\)

\(=360^{0}-(65^{0}+117^{0}+71^{0}) =107^{0}\)

Gọi \(\widehat{D_{1}}\) là góc ngoài tại đỉnh D của tứ giác ABCD. Ta có:

\(\widehat{D}+\widehat{D_{1}}=180^{0}\) (\(\widehat{D}\)\(\widehat{D_{1}}\) là hai góc kề bù)

\(\Rightarrow\) \(\widehat{D_{1}}=180^{0}-\widehat{D}\)

\(=180^{0}-107^{0}=73^{0}\)

Vậy số đo góc ngoài tại đỉnh D của tứ giác ABCD là 730

Tứ giác ABCD có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(65^o+117^o+71^o+\widehat{D}=360^o\)

\(253^o+\widehat{D}=360^o\)

\(\widehat{D}=360^o-253^o=107^o\)

\(\Rightarrow\) Góc ngoài của \(\widehat{D}=180^o-107^o=73^o\)

Vậy số đo góc ngoài tại đỉnh D là \(73^o\)

26 tháng 7 2020

khó vler :<

26 tháng 7 2020

tôi cũng quên luôn cách làm rồi=))))))

1 tháng 10 2020

Trong tứ giác ABCD có :

^A + ^B + ^C + ^D = 3600 ( đ.lí )

Lại có : ^A. ^B, ^C, ^D tỉ lệ thuận với 5, 8, 13, 10

=> ^A/5 = ^B/8 = ^C/13 = ^D/10 và ^A + ^B + ^C + ^D = 3600

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

 ^A/5 = ^B/8 = ^C/13 = ^D/10 = ( ^A + ^B + ^C + ^D )/( 5 + 8 + 13 + 10 ) = 360/36 = 10

=> ^A = 500

     ^B = 800

     ^C = 1300

     ^D = 1000

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Trong tứ giác \(ABCD\) có: \(\widehat {DAB} + \widehat {ABC} + \widehat {BCD} + \widehat {ADC} = 360^\circ \)

Ta có:

\(\widehat {{A_1}} + \widehat {{B_1}} + \widehat {{C_1}} + \widehat {{D_1}}\\\)

\(= \left( {180^\circ  - \widehat {DAB}} \right) + \left( {180^\circ  - \widehat {ABC}} \right) + \left( {180^\circ  - \widehat {BCD}} \right) + \left( {180^\circ  - \widehat {ADC}} \right)\\\)

\(= 180^\circ  + 180^\circ  + 180^\circ  + 180^\circ  - \left( {\widehat {DAB} + \widehat {ABC} + \widehat {BCD} + \widehat {ADC}} \right)\\ \)

\(= 720^\circ  - 360^\circ \\\)

\(= 360^\circ \)