Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm 2 đường chéo của tứ giác ABCD.
Xét :Tam giác BOC có: BC < OB + OC (bất đẳng thức trong tam giác)
Tam giác AOD có: AD < OD + OA (.............................................)
Do đó: BC + AD < (OB + OD) +(OC + OA)
hay BC + AD < BD + AC
Mà AD = AC (GT) => BC < BD.
A B C D O
Bạn tự vẽ hình nhá :)
Gọi O là giao điểm 2 đường chéo.
Tam giác BOC có:BC < OB + OC
Tam giác AOD có: AD < OD + OA
Do đó: BC + AD < (OB + OD) +(OC + OA)
Hay BC + AD < BD + AC
Mà AD = AC => BC < BD
(đ.p.c.m)
A B C D O
Gọi O là giao điểm hai đường chéo AC và BD
- Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được :
\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)
\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)
- Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được :
\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)
\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)
Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)
hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)
A B C D O
Theo bất đẳng thức tam giác ta có:
\(OA+OB>AB\)
\(OB+OC>BC\)
\(OC+OD>DC\)
\(OD+OA>AD\)
Cộng vế theo vế thì \(2\left(OA+OB+OC+OD\right)>AB+BC+CA+AD\)
\(\Rightarrow OA+OB+OC+OD>\frac{AB+BC+CA+AD}{2}\) ( 1 )
Theo bất đẳng thức tam giác ta có:
\(AB+BC>CA;BC+CD>BD;CD+DA>CA;DA+AB>BD\)
Cộng vế theo vế ta có:
\(2\left(AB+BC+CD+AD\right)>2\left(CA+BD\right)=2\left(AO+OC+OD+OB\right)\)
\(\Leftrightarrow AB+BC+CD+DA>OA+OB+OC+OD\) ( 2 )
Từ ( 1 ) ; ( 2 ) suy ra đpcm.
Vì △ AOD đồng dạng △ BOC nên: ∠ ADO = ∠ BCO hay ∠ EDB = ∠ ECA
Xét △ EDB và △ ECA ta có:
∠ E chung
∠ (EDB) = ∠ (ECA) (chứng minh trên)
Vậy △ EDB đồng dạng △ ECA(g.g)
Suy ra: ⇒ ED.EA = EC.EB
Gọi O là giao điểm của hai đường chéo AC và AD .
Xét \(\Delta AOD\)có :
\(AD< AO+OD\)(1)
Xét \(\Delta BOC\)có :
\(BC< OC+BO\)(2)
tỪ (1) VÀ (2)
Cộng vế với vế ta được :
\(AD+BC< AC+BD\)(3)
Theo đề bài ta có :
\(AC=AD\)
\(\Rightarrow BC< BD\)(đpcm)
O B C A D