K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2021

a)Vì AB,AC là tt
`=>hat{ABO}=hat{ACO}=90^o`
Xét tg ABOC có:
`hat{ABO}+hat{ACO}=180^o`
Mà đây là 2 góc đối nhau
`=>` tg ABOC nt
Vì AB,AC là 2 tt cắt tại A
`=>AB=AC`
Mà `OB=OC=R`
`=>` AO là trung trực BC
`=>OA bot BC`
`b)` Không có điểm H sao chứng minh?

8 tháng 6 2021

Bạn ơi, tứ giác A gì á?

17 tháng 5 2018

 a) C/m tg ABCO nội tiếp:

+) Ta có: góc ACO = 90•( vì AC là tiếp tuyến đg tròn (O))

               góc ABO = 90•( vì AB là tiếp tuyến đg tròn (O))

+) Xét tg ABOC có: góc ACO+ góc ABO=90•+90•=180•

Mà 2 góc ở vị trí đối nhau

=> tg ABOC nội tiếp đg tròn(dhnb)

b) C/m: CD// AO:

+) Vì AB và AC là 2 tiếp tuyến cắt nhau tại A(gt) => AO là đg pg của góc COB( t/c 2 tiếp tuyến cắt nhau)

=> AO là pg của tam giác COB

Mà tam giác COB cân tại O( OB=OC=R)

=> OA là đg cao của tam giác COB( t/c tam giác cân)

=> OA vuông góc vs CB( t/c) (1)

+) Xét (O) ta có:

BD là đg kính( gt)

góc BCD là góc nội tiếp chắn cung BD

=> góc BCD= 90• ( t/c góc nội tiếp chắn nửa đg tròn)

=> CD vuông góc vs CB(t/c) (2)

Từ(1) và (2) suy ra: CD// OA( từ vuông góc đến song song).

mk chưa ra câu c nên xin lỗi bn nhiều nhé....

23 tháng 6 2021

a) Ta có: \(\angle ABO+\angle ACO=90+90=180\Rightarrow ABOC\) nội tiếp

Vì AB,AC là tiếp tuyến \(\Rightarrow\Delta ABC\) cân tại A và AO là phân giác \(\angle BAC\)

\(\Rightarrow AO\bot BC\)

b) Ta có: \(\angle OME=\angle OBE=90\Rightarrow OMBE\) nội tiếp

\(\Rightarrow\angle OBM=\angle OEM\)

c) Vì  \(\Delta ABC\) cân tại A và AO là phân giác \(\angle BAC\)

\(\Rightarrow H\) là trung điểm BC

Tương tự như câu b \(\Rightarrow\angle OFM=\angle OCM\)

mà \(\angle OBM=\angle OCM\) (\(\Delta OBC\) cân tại O)

\(\Rightarrow\angle OFM=\angle OEM\Rightarrow\Delta OFE\) cân tại O có \(OM\bot FE\)

\(\Rightarrow\) M là trung điểm FE

Xét \(\Delta HFM\) và \(\Delta BEM:\) Ta có: \(\left\{{}\begin{matrix}MH=MB\\MF=ME\\\angle HMF=\angle BME\end{matrix}\right.\)

\(\Rightarrow\Delta HFM=\Delta BEM\left(c-g-c\right)\Rightarrow\angle HFM=\angle BEM\)

\(\Rightarrow HF\parallel BE\Rightarrow HF\parallel AB\) mà H là trung điểm BC 

\(\Rightarrow F\) là trung điểm BC

 

3 tháng 5 2023

ko bít

8 tháng 5 2020

ajnomoto