K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2017

Tam giác OAB vuông tại O (OA ⊥  OB)

Theo định lý Py-ta-go ta có:  A B = O A 2 + O B 2 = 1 2 + 1 2 = 2

Tương tự BC =  2

Ta có: OM là trung tuyến của tam giác OAB vuông tại O

 

Nên OM = 1/2AB =  1 2 . 2 = 2 2

Đáp án D

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

31 tháng 3 2017

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

NV
19 tháng 3 2021

\(AB=\sqrt{OA^2+OB^2}=OA\sqrt{1+k^2}\)

\(OM=BM=\dfrac{1}{2}AB=\dfrac{OA}{2}\sqrt{1+k^2}\)

\(cos\widehat{OMB}=cos60^0=\dfrac{OM^2+BM^2-OB^2}{2OM.BM}=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{OA^2\left(\dfrac{k^2+1}{4}\right)+OA^2\left(\dfrac{k^2+1}{4}\right)-k^2OA^2}{2.OA^2\left(\dfrac{k^2+1}{4}\right)}=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{1-k^2}{1+k^2}=\dfrac{1}{2}\Rightarrow k^2=\dfrac{1}{3}\Rightarrow k=\dfrac{1}{\sqrt{3}}\)

NV
19 tháng 3 2021

Gọi N là trung điểm AC \(\Rightarrow MN||AB\Rightarrow\widehat{OMN}\) là góc giữa OM và AB

Đặt \(OA=a\)

\(AB=\sqrt{OA^2+OB^2}=\sqrt{a^2+k^2a^2}=a\sqrt{k^2+1}\)

\(AC=\sqrt{OA^2+OC^2}=a\sqrt{k^2+1}\)

\(BC=\sqrt{OB^2+OC^2}=a.k\sqrt{2}\)

\(MN=\dfrac{1}{2}AB=\dfrac{a}{2}\sqrt{k^2+1}\) ; \(OM=\dfrac{BC}{2}=a.\dfrac{k\sqrt{2}}{2}\) ; \(ON=\dfrac{1}{2}AC=a.\dfrac{\sqrt{k^2+1}}{2}\)

\(cos\widehat{OMN}=cos60^0=\dfrac{OM^2+MN^2-ON^2}{2OM.MN}=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{a^2.\dfrac{k^2}{2}}{2.a^2.\dfrac{k\sqrt{2k^2+2}}{4}}=\dfrac{1}{2}\Leftrightarrow2k=\sqrt{2k^2+2}\)

\(\Leftrightarrow4k^2=2k^2+2\Rightarrow k=1\)

19 tháng 3 2021

e cảm ơn ạ

NV
19 tháng 3 2021

Đề bài có vấn đề gì không nhỉ?

Tam giác OAB vuông cân tại O nên OM là trung tuyến đồng thời là đường cao

\(\Rightarrow OM\perp AB\) hay góc giữa OM và AB bằng 90 độ (cosin góc giữa 2 đường thẳng bằng 0)

25 tháng 5 2017

Do \(d\perp\left(ABC\right)\) nên \(MN\perp BC\)

\(\left\{{}\begin{matrix}MC\perp\left(BOH\right)\\BN\subset\left(BOH\right)\end{matrix}\right.\) \(\Rightarrow MC\perp BN\)

\(\left\{{}\begin{matrix}MB\perp\left(CHO\right)\\CN\subset\left(CHO\right)\end{matrix}\right.\)\(\Rightarrow MB\perp CN\)

25 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc