Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có AB,AC là tiếp tuyến của (O)
\(\Rightarrow AB\perp OB,AC\perp OC,AO\perp CB\)
\(\Rightarrow ABOC\) nội tiếp đường tròn đường kính AO (1)
Vì \(BD\perp BC\Rightarrow AO//DE\left(\perp BC\right)\Rightarrow\widehat{DBC}=90^0\) = > CD là đường kính của (O)
Mà \(EO\perp CD,BC\perp DE\Rightarrow\widehat{EBC}=\widehat{EOC}=90^0\)
\(\Rightarrow ECOB\) nội tiếp (2)
Từ (1) , (2) \(\Rightarrow A,E,B,O,C\) nội tiếp đường tròn đường kính AO
\(\Rightarrow EAOB\) nội tiếp
\(\Rightarrow\widehat{EAO}+\widehat{EBO}=180^0\)
Mà \(\widehat{EBO}+\widehat{BOA}=180^0\left(BE//AO\right)\)
\(\Rightarrow\widehat{EAO}=\widehat{BOA}\)
\(\Rightarrow AOBE\) là hình thang cân
a) Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: AB=AC(cmt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OB=OC(=R)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA⊥BC(đpcm)
b) Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: OA là tia phân giác của \(\widehat{BOC}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{BOA}=\widehat{COA}\)(3)
Ta có: ΔOCA vuông tại C(CA là tiếp tuyến của (O) có C là tiếp điểm)
nên \(\widehat{CAO}+\widehat{COA}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{EAO}+\widehat{COA}=90^0\)(4)
Từ (3) và (4) suy ra \(\widehat{EAO}+\widehat{BOA}=90^0\)(5)
Vì tia OA nằm giữa hai tia OE và OB
nên \(\widehat{BOA}+\widehat{EOA}=\widehat{BOE}\)
hay \(\widehat{EOA}+\widehat{BOA}=90^0\)(6)
Từ (5) và (6) suy ra \(\widehat{EAO}=\widehat{EOA}\)
Xét ΔOAE có \(\widehat{EAO}=\widehat{EOA}\)(cmt)
nên ΔOAE cân tại E(Định lí đảo của tam giác cân)
a) Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiêp tuyến cắt nhau)
Xét ΔABC có AB=AC(cmt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Ta có: OA=OB(=R)
nên O nằm trên đường trung trực của CB(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AB=AC(cmt)
nên A nằm trên đường trung trực của CB(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
hay OA\(\perp\)BC(đpcm)
Chứng minh CD là đường kính(CBD=90)
=> D,O,C thẳng hàng
Mà AO song song ED ( cùng vuông góc CB)
=>AOC=EDO( đồng vị)
Từ đó ta có t/gACO đồng dạng t/gEOD
=>CAO=OED (1)
Mặt khác OE là trung trực CD (O là trung điểm của CD có OE vuông góc CD)
=> tam giác CED cân => EO là phân giác CED
=>CEO=OED (2)
Từ (1)và(2)=>CAO=CEO =>AEOC nội tiếp(3)
Mà ACO=EOC=90(4)
Từ 3,4 =>AEOC là hình chữ nhật =>EO=AC
Ta lại có AC=AB( tính chất 2 tt cắt nhau)
=>EO=AB(*)
Mà EB song song AO (*)(*)
Từ (*),(*)(*)=> AEBO là hình thang cân