Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DI//CF
=>góc EID=góc EFC=góc EBD
=>EBID nội tiếp
=>góc EDB=góc EIB
mà góc EIB=góc KOB
nên góc EDB=góc KOB
=>góc KDB=góc KOB
=>KBOD nộitiếp
d: Gọi J là giao cùa EM với BF
K là trung điểm của EF
=>OK vuông góc EF
=>góc OKA=90 độ
góc OKA=góc OBA=90 độ
=>ABKO nội tiếp
=>A,B,K,O,C cùng thuộc 1 đường tròn
=>góc A1=góc C2
EMKC nội tiếp
=>góc E1=góc C2
=>góc A1=góc E1
=>EM//AB
=>EJ//AB
=>KMlà đường trung bình của ΔKJF
=>M là trung điểm của EJ
=>ME=MJ
EJ//AB
nên ME/AN=FM/FN=MJ/NB
mà ME=MJ
nên AN=NB
a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)
nên AIOC là tứ giác nội tiếp
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
hay OA⊥BC
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)
a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)
nên AIOC là tứ giác nội tiếp
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
hay OA⊥BC
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)
Sửa đề: ABIO nội tiếp
ΔOEF cân tại O
mà OI là trung tuyến
nên OI vuông góc FE
góc OIA=góc OBA=90 độ
=>OIBA nội tiếp