Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nối CE, CF
Xét \(\Delta CEK\) và \(\Delta CFK\) có:
\(\widehat{ECK}\)= \(\widehat{CFK}\) (vì cùng chắn \(\widebat{CE}\))
\(\widehat{CKF}\) chung
\(\Rightarrow\)\(\Delta EKC~\Delta CKF\left(g.g\right)\)
\(\Rightarrow\frac{EK}{CK}=\frac{CK}{FK}\)
\(\Rightarrow CK^2=EK.FK\)(1)
Vì \(\Delta COK\)vuông tại C, \(CM\perp OK\)
\(\Rightarrow CK^2=MK.OK\)(2)
Từ (1), (2) \(\Rightarrow EK.FK=MK.OK\)
\(\Rightarrow\frac{EK}{MK}=\frac{OK}{FK}\)
Xét \(\Delta MEK\)và \(\Delta KOF\)có:
\(\widehat{MKE}\)chung
\(\frac{EK}{MK}=\frac{OK}{FK}\)
\(\Rightarrow\Delta MEK~\Delta FOK\left(c.g.c\right)\)
\(\Rightarrow\widehat{OFE}=\widehat{EMK}\)
\(\Rightarrow\)Tứ giác EMOF nội tiếp
góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
góc ABD=góc AKB
góc A chung
=>ΔABD đồng dạng với ΔAKB
=>AB/AK=AD/AB
=>AB^2=AK*AD
AB,AC là tiếp tuyến
=>AB=AC
=>OA là trung trực của BC
=>OB^2=OH*OA; AB^2=AH*AO
OH*OA+AD*AK=OB^2+AB^2=OA^2
AD*AK=AH*AO=AB^2
=>ΔAHD đồng dạng với ΔAKO
=>góc AHD=góc AKO=góc OKD=góc ODK(ΔODK cân tại O)
=>góc OAD=góc HDO+góc ODA
Gọi DM vuông góc OB và cắt BK tại E
ME//AB
=>ME/BP=KM/KP=KE/KB
DE//AB
=>KE/KB=KP/KA
=>KE/AB=KM/KP=KD/KA
=>KE/KB=KD/KA
Xet ΔAPK có
DM//AP
KM/KP=KD/KA
=>K,M,P thẳng hàng