Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)
b) Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).
Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:
8. 3! = 48 (số)
a) Mỗi số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là cách chọn 4 chữ số và sắp xếp chúng, mỗi cách chọn như vậy là một chỉnh hợp chập 4 của 6 phần tử. Do đó, số các số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là:
\(A_6^4 = 6.5.4.3 = 360\) (số)
b) Việc lập một số có 4 chữ số từ 6 chữ số 0; 1; 2; 3; 4; 5 bao gồm 2 công đoạn
Công đoạn 1: Chọn 1 chữ số khác 0 làm chữ số hàng nghìn, có 5 cách chọn (1; 2; 3; 4 hoặc 5)
Công đoạn 2: Chọn 3 chữ số từ 5 chữ số còn lại (trừ chữ số đã chọn làm chữ số hàng nghìn) và sắp xếp chúng, mỗi cách như vậy là một chỉnh hợp chập 3 của 5 phần tử. Do đó, số cách chọn 3 chữ số từ 5 chữ số còn lại và sắp xếp chúng là:
\(A_5^3 = 5.4.3 = 60\) (cách)
Áp dụng quy tắc nhân, ta có số các số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là :
\(5.60 = 300\) (số)
Gọi STN có 3 chữ số là \(\overline {abc} \)
- a có 4 cách ( khác 0).
- b có 4 cách (khác a).
- c có 3 cách (khác a, b).
Vậy có thể lập được 4. 4. 3= 48 số tự nhiên có ba chữ số khác nhau.
Gọi số cần tìm là \(\overline{abcd}\)
TH1 : a = 6
Số cách chọn chữ số a : 1 cách
Số cách chọn chữ số b : 2 cách
Số cách chọn chữ số c,d : \(A^2_6\)
=> Số các số lập được \(1.2.A^2_6\)
TH2 : a = 7 hoặc a = 8
=> Số các số là : \(2.A^3_7\)
Vậy có tất cả : \(P=1.2.A^2_6+2.A_7^3=480\) số
có 5 cách chọn hàng chục nghìn
5 cách chọn hàng nghìn
5 cách chọn hàng trăm
5 cách chọn hàng chục
5 cách chọn hàng đơn vị
=>> ta có : 5*5*5*5*5=3125 số có 5 chữ số lập từ các số 1;2;3;4;5
k đúng cho mình nhé
TH1: chữ số hàng đơn vị là 4, khi đó hàng chục là 5
Chọn 2 chữ số còn lại và xếp vào 2 vị trí đầu có \(A_7^2=42\) cách
TH2: chữ số hàng đơn vị khác 4 \(\Rightarrow\) có 3 cách chọn từ 2, 6, 8
Chọn chữ số còn lại có 6 cách
Hoán vị chữ số đó và cặp 45: \(2!.2!=4\) cách
\(\Rightarrow3.6.4=72\) số
Tổng: \(42+72=114\) số
TH1: 2 chẵn 2 lẻ
=>Có \(C^2_5\cdot C^2_4\cdot2=120\left(cách\right)\)
TH2: 3 lẻ, 1 chẵn
=>Có \(C^3_5\cdot4\cdot4!=960\left(cách\right)\)
TH3: 4 lẻ
=>Có \(C^4_5\cdot4!=120\left(cách\right)\)
=>Có 120+960+120=1200 cách
a)
Ta có
5 cách chọn chữ số thứ nhất
5 cách chọn chữ số thứ 2
5 cách chọn chữ số thứ 3
5 cách chọn chữ số thứ 4
=> Có tất cả
\(5.5.5.5=625\left(s\right)\)
b) Ta có
5 cách chọn chữ số thứ nhất
4 cách chọn chữ số thứ 2
3 cách chọn chữ số thứ 3
2 cách chọn chữ số thứ 4
=> Có tất cả
\(5.4.3.2=120\left(s\right)\)