K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

a)

Ta có

5 cách chọn chữ số thứ nhất

5 cách chọn chữ số thứ 2

5 cách chọn chữ số thứ 3

5 cách chọn chữ số thứ 4

=> Có tất cả

\(5.5.5.5=625\left(s\right)\)

b) Ta có

5 cách chọn chữ số thứ nhất

4 cách chọn chữ số thứ 2

3 cách chọn chữ số thứ 3

2 cách chọn chữ số thứ 4

=> Có tất cả

\(5.4.3.2=120\left(s\right)\)

4 tháng 5 2023

Gọi \(\overline{abc}\) là số cần tìm

Để chữ số hàng đơn vị là chữ số nhỏ nhất \(\Rightarrow c=0\)

=> c có 1 cách chọn

=> a và b có \(A^2_5\) cách chọn

Vậy có: \(1\cdot A^2_5=20\) số

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)     Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)

b)    Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).

Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:

       8. 3! = 48 (số)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Mỗi số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là cách chọn 4 chữ số và sắp xếp chúng, mỗi cách chọn như vậy là một chỉnh hợp chập 4 của 6 phần tử. Do đó, số các số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là:

                   \(A_6^4 = 6.5.4.3 = 360\) (số)

b) Việc lập một số có 4 chữ số từ 6 chữ số 0; 1; 2; 3; 4; 5 bao gồm 2 công đoạn

          Công đoạn 1: Chọn 1 chữ số khác 0 làm chữ số hàng nghìn, có 5 cách chọn (1; 2; 3; 4 hoặc 5)

          Công đoạn 2: Chọn 3 chữ số từ 5 chữ số còn lại (trừ chữ số đã chọn làm chữ số hàng nghìn) và sắp xếp chúng, mỗi cách như vậy là một chỉnh hợp chập 3 của 5 phần tử. Do đó, số cách chọn 3 chữ số từ 5 chữ số còn lại và sắp xếp chúng là:

                             \(A_5^3 = 5.4.3 = 60\) (cách)

Áp dụng quy tắc nhân, ta có số các số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là :

                             \(5.60 = 300\) (số)

NV
18 tháng 3 2023

Có thể lập được \(A_7^4=840\) số

18 tháng 3 2023

giải chi tiết đc kh ạ

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Gọi STN có 3 chữ số là \(\overline {abc} \)

-  a có 4 cách ( khác 0).

-  b có 4 cách (khác a).

-  c có 3 cách (khác a, b).

Vậy có thể lập được 4. 4. 3= 48 số tự nhiên có ba chữ số khác nhau.

16 tháng 4 2023

Gọi số cần tìm là \(\overline{abcd}\)

TH1 : a = 6

Số cách chọn chữ số a : 1 cách

Số cách chọn chữ số b : 2 cách 

Số cách chọn chữ số c,d : \(A^2_6\)

=> Số các số lập được \(1.2.A^2_6\)

TH2 : a = 7 hoặc a = 8

=> Số các số là : \(2.A^3_7\)

Vậy có tất cả : \(P=1.2.A^2_6+2.A_7^3=480\) số

30 tháng 11 2021

có 5 cách chọn hàng chục nghìn
5 cách chọn hàng nghìn
5 cách chọn hàng trăm
5 cách chọn hàng chục

5 cách chọn hàng đơn vị

=>> ta có : 5*5*5*5*5=3125 số có 5 chữ số lập từ các số 1;2;3;4;5

k đúng cho mình nhé

NV
18 tháng 3 2023

TH1: chữ số hàng đơn vị là 4, khi đó hàng chục là 5

Chọn 2 chữ số còn lại và xếp vào 2 vị trí đầu có \(A_7^2=42\) cách

TH2: chữ số hàng đơn vị khác 4 \(\Rightarrow\) có 3 cách chọn từ 2, 6, 8

Chọn chữ số còn lại có 6 cách

Hoán vị chữ số đó và cặp 45: \(2!.2!=4\) cách

\(\Rightarrow3.6.4=72\) số

Tổng: \(42+72=114\) số

TH1: 2 chẵn 2 lẻ

=>Có \(C^2_5\cdot C^2_4\cdot2=120\left(cách\right)\)

TH2: 3 lẻ, 1 chẵn

=>Có \(C^3_5\cdot4\cdot4!=960\left(cách\right)\)

TH3: 4 lẻ

=>Có \(C^4_5\cdot4!=120\left(cách\right)\)

=>Có 120+960+120=1200 cách