K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp(1)

Xét tứ giác OHMB có \(\widehat{OHM}+\widehat{OBM}=180^0\)

nên OHMB là tứ giác nội tiếp(2)

Từ (1) và (2) suy ra O,H,A,M,B cùng thuộc đường tròn

b: Xét ΔMAC và ΔMDA có 

\(\widehat{MAC}=\widehat{MDA}\)

\(\widehat{AMC}\) chung

Do đó:ΔMAC\(\sim\)ΔMDA
Suy ra: MA/MD=MC/MA

hay \(MA^2=MD\cdot MC=MO^2-R^2\)

25 tháng 5 2022

 xin hình vẽ vs ạ

19 tháng 3 2019

Bạn tự vẽ hình được không? Rồi mình giúp, vì mình không biết sử dụng phần mềm vẽ hình.

19 tháng 3 2019

a) Ta có: MA, MB là tiếp tuyến  

=> \(OA\perp MA,OB\perp MB\)

=> \(\widehat{OBM}+\widehat{OAM}=90^o+90^o=180^o\)

=> Tứ giác OBMA nội tiếp

b) Xét tam giác MCA và MAD có

góc CMA=góc AMD

góc MDA=MAC 

=> tam giác MCA đồng dạng AMD

=> \(\frac{MA}{MC}=\frac{AD}{MA}\Rightarrow MA^2=MD.MC\)

c) Gọi J là trung điểm OM

Ta có: tam giác OAM vuông tại A=> JA=JO=JM

tam giác OBM vuông tại B => JB=JM=JO

=> JA=JB=JO=JM=R 

=> J là tâm đường tròn ngoại tiếp OAMN có bán kính R

I là trung điểm CD

=> OI vuông CD

=> Tam giác OIM vuông tại I có J là trung điểm OM

=> JO=JI=JM=R

=> I thuộc đường tròn ngoại tiếp tứ giác OAMN