Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B M N K
a) Xét 2 tam giác ABM và ACM:
+ MB=MC
+ AB=AC
+ Cạnh AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Xét 2 tam giác ANK và BNC
+ NK=NC
+ NA=NB
+ Góc ANK = góc BNC ( hai góc đối đỉnh )
\(\Rightarrow\Delta ANK=\Delta BNC\left(c.g.c\right)\)
\(\Rightarrow AK=BC\)( hai cạnh tương ứng )
Mà M là trung điểm của BC nên BC=2MC
\(\Rightarrow AK=2.MC\)
c) Ta có \(\widehat{AKN}=\widehat{BCN}\)( hai góc tương ứng của hai tam giác bằng nhau )
Mà hai góc AKN và BCN là cặp góc so le trong
\(\Rightarrow AK//BC\)
Vì hai tam giác ABM=ACM nên góc AMB= góc AMC ( hai góc tương ứng )
Mà góc AMB + AMC = 180 độ ( kề bù )\
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
\(\Rightarrow AM\perp BC\)
Mà AK//BC
\(\Rightarrow AM\perp AK\)
A B C G N M N K
a. Xét tam giác ABM và tam giác ACN có
góc A chung
AB = AC [ vì tam giác ABC cân ]
AM = AN [ \(AM=AN=\frac{AB}{2}=\frac{AC}{2}\)]
Do đó ; tam giác ABM = tam giác ACN [ c.g.c ]
b.Xét tam giác ANG và tam giác BNK có
NG = NK
góc ANG = góc BNK [ đối đỉnh ]
AN = BN [ vì N là tđ' của AB ]
Do đó ; tam giác ANG = tam giác BNK [ c.g.c ]
\(\Rightarrow\)góc AGN = góc BKN [ ở vị trí so le trong ]
\(\Rightarrow\)AG // BK
Giải:
Xét ΔAMK,ΔBCKΔAMK,ΔBCK có:
AK=KB(=12AB)AK=KB(=12AB)
K1ˆ=K2ˆK1^=K2^ ( đối đỉnh )
MK=KC(gt)MK=KC(gt)
⇒ΔAMK=ΔBCK(c−g−c)⇒ΔAMK=ΔBCK(c−g−c)
⇒A1ˆ=Bˆ⇒A1^=B^ ( góc t/ứng )
Xét ΔANE,ΔCBEΔANE,ΔCBE có:
AE=EC(=12AC)AE=EC(=12AC)
E1ˆ=E2ˆE1^=E2^ ( đối đỉnh )
BE=EN(gt)BE=EN(gt)
⇒ΔANE=ΔCBE(c−g−c)⇒ΔANE=ΔCBE(c−g−c)
⇒A2ˆ=Cˆ⇒A2^=C^ ( góc t/ứng )
Ta có: Aˆ+Bˆ+Cˆ=180oA^+B^+C^=180o ( tổng 3 góc của ΔABCΔABC )
⇒Aˆ+A1ˆ+A2ˆ=180o⇒A^+A1^+A2^=180o
⇒MANˆ=180o⇒MAN^=180o
⇒M,A,N⇒M,A,N thẳng hàng (1)
Vì ΔAMK=ΔBCKΔAMK=ΔBCK
⇒MA=BC⇒MA=BC ( cạnh t/ứng )
Vì ΔANE=ΔCBEΔANE=ΔCBE
⇒AN=BC⇒AN=BC
⇒MA=AN(=BC)⇒MA=AN(=BC) (2)
Từ (1) và (2) ⇒A⇒A là trung điểm của MN
Vậy A là trung điểm của MN
K là giao điểm của 3 đường trung tuyến. CN là đường trung tuyến kẻ từ C nên AN=BN
Câu hỏi của Lê Thanh Phúc - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo ở link này nhé.