Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nhé bạn:vv
a) Xét ∆MHC và ∆MKB:
\(\widehat{CMH}=\widehat{BMK}\) (2 góc đối đỉnh)
\(CM=MB\left(gt\right)\)
\(HM=MK\left(gt\right)\)
=> ∆MHC=∆MKB(c.g.c)
b) Vì ∆ABC vuông ở A có đường trung tuyến AM
\(\Rightarrow AM=\dfrac{1}{2}BC=MC=MB\)
=> ∆AMC cân tại M
=> MH vừa là đường cao vừa là đường trung tuyến của ∆AMC.
=> AH=CH
Mà theo câu a: ∆MHC=∆MKB
=> CH=KB (2 cạnh tương ứng)
=> AH=KB
=> Đpcm
c) Xét ∆ABC có : AM và BH là 2 đường cao
=> I là trọng tâm của ∆ABC
Mà D là trung điểm của AB
=> CD là đường cao thứ 3 của ∆ABC
=> CD phải đi qua trọng tâm I
=> C, D, I thẳng hàng.
a) Xét ΔMHC và ΔMKB có
MH=MK(gt)
\(\widehat{HMC}=\widehat{KMB}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔMHC=ΔMKB(c-g-c)
a: Xet ΔMAB và ΔMDC có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC
b: ΔMAB=ΔMDC
=>góc MAB=góc MDC
=>AB//CD
c: Xét tứ giác ABCE có
N là trung điểm chung của AC và BE
=>ABCE là hình bình hành
=>AB//EC
=>C,E,D thẳng hàng
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔMHC và ΔMKB có
MH=MK
\(\widehat{HMC}=\widehat{KMB}\)
MC=MB
Do đó: ΔMHC=ΔMKB
Bài này giống lớp 8 ý bạn? Hắc Bạch Công Tử
cho tam giác ABC ,đường trung tuyến AM, trên tia đối của tia AM lấy điểm N sao cho AN=AM
gọi MK là giao điểm của CA và NB
hãy vẽ hình, chứng minh NK=1\2 KB
Check lại khúc in đậm đó xem? Mình nghĩ là AM = MN?