K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Biên độ dao động \(A =  - 5\); Pha ban đầu của dao động: \(\varphi  = 0\)

b) Pha dao động tại thời điểm \(t = 2\) à \(\omega t + \varphi  = 4\pi .2 = 8\pi \)

Chu kỳ \(T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{4\pi }} = 0,2\)

Trong khoảng thời gian 2 giây, số dao động toàn phần vật thực hiện được là: \(\frac{2}{{0,2}} = 10\) (dao động)

Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức \(x\left( t \right) = A.\cos \left( {\omega t + \varphi } \right),\;\)trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0) và \(\varphi  \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động.Xét hai dao động điều hòa có phương trình:         \({x_1}\left(...
Đọc tiếp

Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức \(x\left( t \right) = A.\cos \left( {\omega t + \varphi } \right),\;\)trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0) và \(\varphi  \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động.

Xét hai dao động điều hòa có phương trình:

         \({x_1}\left( t \right) = 2.\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right)\left( {cm} \right)\)

          \({x_2}\left( t \right) = 2.\cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)\left( {cm} \right)\)

Tìm dao động tổng hợp \(x\left( t \right) = {x_1}\left( t \right) + {x_2}\left( t \right)\) và sử dụng công thức biến đổi tổng thành tích để tìm biên độ và pha ban đầu của dao động tổng hợp này.

1
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \(x\left( t \right) = {x_1}\left( t \right) + {x_2}\left( t \right) = 2\left[ {\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) + \cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)} \right]\)

          \(2\left[ {\cos \left( {\frac{{\frac{\pi }{3}t + \frac{\pi }{6} + \frac{\pi }{3}t - \frac{\pi }{3}}}{2}} \right).\cos \left( {\frac{{\frac{\pi }{3}t + \frac{\pi }{6} - \frac{\pi }{3}t + \frac{\pi }{3}}}{2}} \right)} \right] = 2\left[2. {\cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right).\cos \frac{\pi }{4}} \right] = 2\sqrt 2 \cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right)\)

Vậy biên độ là \(2\sqrt 2 \), pha ban đầu \( - \frac{\pi }{{12}}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có

 \(\begin{array}{l}t = 0 \Rightarrow \omega t = 0\\t = \frac{T}{4} \Rightarrow \omega t = \omega .\frac{{\frac{{2\pi }}{\omega }}}{4} = \frac{\pi }{2}\\t = \frac{T}{2} \Rightarrow \omega t = \omega .\frac{{\frac{{2\pi }}{\omega }}}{2} = \pi \\t = \frac{{3T}}{4} \Rightarrow \omega t = \omega .\frac{{3.\frac{{2\pi }}{\omega }}}{4} = \frac{{3\pi }}{2}\\t = T \Rightarrow \omega t = \omega .\frac{{2\pi }}{\omega } = 2\pi \end{array}\)

a)     \(A = 3cm,\varphi  = 0\)

+) Với t=0 thì \(x = 3\cos \left( {\omega .0 + 0} \right) = 3\)

+) Với \(t = \frac{T}{4}\)thì \(x = 3\cos \left( {\frac{\pi }{2} + 0} \right) = 0\)

+) Với \(t = \frac{T}{2}\)thì \(x = 3\cos \left( {\pi  + 0} \right) =  - 3\)

+)Với \(t = \frac{{3T}}{4}\)thì \(x = 3\cos \left( {\frac{{3\pi }}{2} + 0} \right) = 0\)

+Với \(t = T\)thì \(x = 3\cos \left( {2\pi  + 0} \right) = 3\)

b)     \(A = 3cm,\varphi  =  - \frac{\pi }{2}\)

+) Với t=0 thì \(x = 3\cos \left( {0 - \frac{\pi }{2}} \right) = 0\)

+) Với \(t = \frac{T}{4}\)thì \(x = 3\cos \left( {\frac{\pi }{2} - \frac{\pi }{2}} \right) = 3\)

+) Với \(t = \frac{T}{2}\)thì \(x = 3\cos \left( {\pi  - \frac{\pi }{2}} \right) = 0\)

+)Với \(t = \frac{{3T}}{4}\)thì \(x = 3\cos \left( {\frac{{3\pi }}{2} - \frac{\pi }{2}} \right) = 3\)

+Với \(t = T\)thì \(x = 3\cos \left( {2\pi  - \frac{\pi }{2}} \right) = 0\)

c)     \(A = 3cm,\varphi  = \frac{\pi }{2}\)

+) Với t=0 thì \(x = 3\cos \left( {0 + \frac{\pi }{2}} \right) = 0\)

+) Với \(t = \frac{T}{4}\)thì \(x = 3\cos \left( {\frac{\pi }{2} + \frac{\pi }{2}} \right) = 3\)

+) Với \(t = \frac{T}{2}\)thì \(x = 3\cos \left( {\pi  + \frac{\pi }{2}} \right) = 0\)

+)Với \(t = \frac{{3T}}{4}\)thì \(x = 3\cos \left( {\frac{{3\pi }}{2} + \frac{\pi }{2}} \right) = 3\)

+Với \(t = T\)thì \(x = 3\cos \left( {2\pi  + \frac{\pi }{2}} \right) = 0\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Vật đi qua vị trí cân bằng thì x = 0

Khi đó

 \(\begin{array}{l}2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi \\\Leftrightarrow t =   \frac{2\pi }{15} +  \frac{{k\pi }}{5}  ;k \in Z\end{array}\)

Do khoảng thời gian từ 0 đến 6 giây nên \(t \in \left[ {0;6} \right]\) 

 \(\begin{array}{l}0 \le \ \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5} \le \ 6;k \in Z\\ \Rightarrow  \frac{-2 }{3}\le \ k \le \ \frac{90 - 2\pi}{3\pi};k \in Z\end{array}\)

Do \(k \in Z\) nên \(k \in \left\{ {0;1;2;3;4;5;6;7;8} \right\}\)

Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.

NV
22 tháng 10 2021

\(sin\left(2t+\dfrac{\pi}{4}\right)\le1\Rightarrow x\le3\)

\(x_{max}=3\) khi \(sin\left(2t+\dfrac{\pi}{4}\right)=1\)

\(\Leftrightarrow2t+\dfrac{\pi}{4}=\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow t=\dfrac{\pi}{8}+k\pi\) với \(k\in Z\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Vận tốc tức thời của dao động: \(f'\left( x \right) =  - \sin x\)

Vận tốc tức thời của vật tại thời điểm \({x_0} = 2\left( s \right)\):\(f'\left( 2 \right) =  - \sin \left( 2 \right) = 0,91\left( {m/s} \right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(v\left(t\right)=s'\left(t\right)=4\left[cos\left(2\pi t-\dfrac{\pi}{8}\right)\right]'\\ =-4\left(2\pi t-\dfrac{\pi}{8}\right)'sin\left(2\pi t-\dfrac{\pi}{8}\right)\\ =-8\pi sin\left(2\pi t-\dfrac{\pi}{8}\right)\)

Vận tốc của vật khi t = 5s là \(v\left(5\right)=-8\pi sin\left(10\pi-\dfrac{\pi}{8}\right)\approx9,6\left(m/s\right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a)     Vận tốc tức thời của con lắc: \(v(t) =  - 4\pi \sin \left( {\pi t - \frac{{2\pi }}{3}} \right)\)

Gia tốc tức thời của con lắc: \(a(t) =  - 4{\pi ^2}\cos \left( {\pi t - \frac{{2\pi }}{3}} \right)\)

b)    Tại vận tốc tức thời của con lắc bằng 0, ta có:

\( - 4\pi \sin \left( {\pi t - \frac{{2\pi }}{3}} \right) = 0 \Leftrightarrow \sin \left( {\pi t - \frac{{2\pi }}{3}} \right) = 0 \Leftrightarrow \pi t - \frac{{2\pi }}{3} = 0 \Leftrightarrow t = \frac{2}{3}\)

Với \(t = \frac{2}{3} \Rightarrow a(t) =  - \,4{\pi ^2}\cos \left( {\pi .\frac{2}{3} - \frac{2}{3}\pi } \right) =  - \,4{\pi ^2}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(v\left(t\right)=s'\left(t\right)=0,8\pi cos\left(0,8\pi t+\dfrac{\pi}{3}\right)\\ a\left(t\right)=v'\left(t\right)=-0,64\pi^2sin\left(0,8\pi t+\dfrac{\pi}{3}\right)\)

Vì: 

\(v\left(t\right)=0\\ \Leftrightarrow0,8\pi cos\left(0,8\pi t+\dfrac{\pi}{3}\right)=0\\ \Leftrightarrow0,8\pi t+\dfrac{\pi}{3}=\dfrac{\pi}{2}+k2\pi,k\in Z\\ \Leftrightarrow0,8\pi t=\dfrac{\pi}{6}+k\pi\\ \Leftrightarrow t=\dfrac{5}{24}+\dfrac{5k}{4}\)

Thời điểm vận tốc bằng 0, giá trị tuyệt đối của vật là 

\(\left|a\left(\dfrac{5}{25}+\dfrac{5k}{4}\right)\right|=\left|-0,64\pi^2sin\left[0,8\pi\left(\dfrac{5}{24}+\dfrac{5k}{4}\right)+\dfrac{\pi}{3}\right]\right|\\ =0,64\pi^2\left|sin\left(\dfrac{\pi}{2}+k\pi\right)\right|\\ =0,64\pi^2\approx6,32\)

\(\Rightarrow\) Chọn C.

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

Độ dài bóng OM bằng 10 cm khi s = 10 hoặc s = -10.

Khi s = 10. Ta có: \(17cos5\pi t = 10 \Leftrightarrow cos5\pi t = \frac{{10}}{{17}}\)

Khi s = 10. Ta có: \(17cos5\pi t =  - 10 \Leftrightarrow cos5\pi t = \frac{{ - 10}}{{17}}\)

Từ đó, ta có thể xác định được các thời điểm t bằng cách giải phương trình côsin.