K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

Bạn làm đúng rồi.

Bước thử lại có thể bạn nhầm.

5 tháng 11 2016

Có vô số cặp đa thức (P ; Q) thỏa mãn đề bài với P = k.(x - 1) ; P = k.(x + 2)2 (k\(\in N\))

Bạn thử lại bị sai thôi,làm đúng thì sai thế nào được ?

Chỗ (x + 2)2 bạn còn rập khuôn quá,cứ chuyển ra dạng tích 2 đa thức,phải áp dụng hằng đẳng thức bình phương của tổng chứ !

8 tháng 2 2020

Bài 1 dài dòng quá em :( Rút gọn bớt cũng được thì phải

8 tháng 2 2020

Chị ơi bài 1 em sai cái gì ko ạ ? đk x khác 3 mà đúng ko

EM mệt lắm cô@@ ngày e chạy nhìu lắm mồ phải lên 4 tầng liềnTầng 1:We have \(C=\left(\frac{2}{x-2}+\frac{x-1}{2x-x^2}\right):\left(\frac{x+2}{x}-\frac{x-1}{x-2}\right)\)\(=\left(\frac{2x}{x\left(x-2\right)}+\frac{1-x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}-\frac{x^2-x}{x\left(x-2\right)}\right)\)\(=\frac{x+1}{x\left(x-2\right)}:\frac{x-4}{x\left(x-2\right)}\)\(=\frac{x+1}{x-4}\)Tầng...
Đọc tiếp

EM mệt lắm cô@@ ngày e chạy nhìu lắm mồ phải lên 4 tầng liền

Tầng 1:We have \(C=\left(\frac{2}{x-2}+\frac{x-1}{2x-x^2}\right):\left(\frac{x+2}{x}-\frac{x-1}{x-2}\right)\)

\(=\left(\frac{2x}{x\left(x-2\right)}+\frac{1-x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}-\frac{x^2-x}{x\left(x-2\right)}\right)\)

\(=\frac{x+1}{x\left(x-2\right)}:\frac{x-4}{x\left(x-2\right)}\)

\(=\frac{x+1}{x-4}\)

Tầng 2: \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\\x\ne4\end{cases}}\)

We have  \(2x^2+8x=0\)

\(\Leftrightarrow2x\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(loai\right)\\x=-4\left(tm\right)\end{cases}}\)

Put x=-4 into C we have 

\(C=\frac{-4+1}{-4-4}=\frac{3}{8}\)

So \(C=\frac{3}{8}\)if x-4

Tầng 3 @@ chân em sắp rời rồi 

Because  \(C=\frac{-1}{2}\)

Then \(\frac{x+1}{x-4}=\frac{-1}{2}\)

\(\Leftrightarrow x=\frac{2}{3}\)

Tầng 4: phù cố lên sắp lên đến đỉnh r

 \(C\in Z\Leftrightarrow x+1⋮x-4\)( em làm kiểu lớp 6 lun nha cô làm cách chia em phải vẽ lâu lắm )

\(\Leftrightarrow x-4+5⋮x-4\)

Because \(x-4⋮x-4\)

so \(5⋮x-4\)

\(\Leftrightarrow x-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Leftrightarrow x\in\left\{5;3;9;-1\right\}\left(tm\right)\)

SO...

 

 

1

M lm đg r . Nhg m lm toán ghi TV nha m. TA t đọc đc nhưng kì kì.

Bài 2:a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) \(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) \(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) \(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) \(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) Có: \(\left|y+3\right|\ge0\) \(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) Do...
Đọc tiếp

Bài 2:

a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) 

\(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) 

\(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) 

\(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) 

\(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) 

Có: \(\left|y+3\right|\ge0\) 

\(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) 

Do đó: \(\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]=0\) 

\(\Leftrightarrow\hept{\begin{cases}y+3=0\\x+y=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\) 

b. \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\) 

\(\Leftrightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+\left[2\left(x^2-5x-2012\right)\right]^2=0\) 

\(\Leftrightarrow\left(2x^2+x-2013-2x^2+10x+4024\right)^2=0\) 

\(\Leftrightarrow\left(11x+2011\right)^2=0\) 

\(\Leftrightarrow11x+2011=0\) 

\(\Leftrightarrow x=-\frac{2011}{11}\) 

0
3) \(\frac{x-2}{x-5}-\frac{5}{x^2-5x}=\frac{1}{x}\) \(\Leftrightarrow\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\) \(\Leftrightarrow\frac{x.\left(x-2\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x-5\right)}{x.\left(x-5\right)}\) Mc: \(x.\left(x-5\right)\) \(\Leftrightarrow\) \(x^2\) - 2\(x\) - 5 = \(x\) - 5 \(\Leftrightarrow\) \(x^2\) - 2\(x\) - \(x\) - 5 + 5 = 0 \(\Leftrightarrow\) \(x^2\) - 3\(x\) = 0 \(\Leftrightarrow\) \(x\) . (\(x\) - 3) =...
Đọc tiếp

3) \(\frac{x-2}{x-5}-\frac{5}{x^2-5x}=\frac{1}{x}\)

\(\Leftrightarrow\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\)

\(\Leftrightarrow\frac{x.\left(x-2\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x-5\right)}{x.\left(x-5\right)}\)

Mc: \(x.\left(x-5\right)\)

\(\Leftrightarrow\) \(x^2\) - 2\(x\) - 5 = \(x\) - 5

\(\Leftrightarrow\) \(x^2\) - 2\(x\) - \(x\) - 5 + 5 = 0

\(\Leftrightarrow\) \(x^2\) - 3\(x\) = 0

\(\Leftrightarrow\) \(x\) . (\(x\) - 3) = 0

\(\Leftrightarrow\) \(x\) = 0 hoặc \(x\) - 3 = 0

\(\Leftrightarrow\) \(x\) = 0 hoặc \(x\) = 3

Vậy \(x\) = 0 hoặc \(x\) = 3

\(x-5\ne0\Rightarrow x\ne5\)

\(x^2-5\ne0\Rightarrow x\ne5\)\(x\ne0\) \(\Rightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)

\(x\ne0\)

Vậy S = {3}

4) \(\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x^2+7x}\)

\(\Leftrightarrow\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x.\left(x+7\right)}\)

\(\Leftrightarrow\frac{x.\left(x-4\right)}{x.\left(x+7\right)}-\frac{1.\left(x+7\right)}{x.\left(x+7\right)}=\frac{-7}{x.\left(x+7\right)}\)

Mc: \(x.\left(x+7\right)\)

\(\Leftrightarrow x^2-4x-x-7=-7\)

\(\Leftrightarrow x^2-4x-x=-7+7\)

\(\Leftrightarrow\) \(x^2-5x=0\)

\(\Leftrightarrow x.\left(x-5\right)=0\)

\(\Leftrightarrow x=0\) hoặc \(x-5=0\)

\(\Leftrightarrow x=0\) hoặc \(x=5\)

Vậy \(x=0\) hoặc \(x=5\)

\(x+7\ne0\Rightarrow x\ne-7\)

\(x^2+7\ne0\Rightarrow x\ne-7\)\(x\ne0\) \(\Rightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-7\end{matrix}\right.\)

\(x\ne0\)

Vậy S = {5}

5) \(\frac{x+2}{x-2}+\frac{x-2}{x+2}=\frac{8x}{x^2-4}\)

\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{matrix}\right.\Rightarrow TXĐ\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

Mc : \(\left(x-2\right).\left(x+2\right)\)

\(\Leftrightarrow\frac{\left(x+2\right).\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{\left(x-2\right).\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{8x}{\left(x-2\right).\left(x+2\right)}\)

\(\Leftrightarrow x^2+2x+2x+4+x^2-2x-2x+4=8x\)

\(\Leftrightarrow x^2+x^2+2x+2x-2x-2x-8x+4+4=0\)

\(\Leftrightarrow2x^2-8x+8=0\)

\(\Leftrightarrow\) \(2x^2-4x-4x+8=0\)

\(\Leftrightarrow\) \(2x.\left(x-2\right)-4.\left(x-2\right)=0\)

\(\Leftrightarrow\left(2x-4\right).\left(x-2\right)=0\)

\(\Leftrightarrow2x-4=0\) hoặc \(x-2=0\)

\(\Leftrightarrow x=2\) hoặc \(x=2\)

\(\Leftrightarrow x=2\) (Loại) hoặc x = 2 (Loại)

Vậy S = \(\left\{\varnothing\right\}\)

6) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)

\(\Leftrightarrow\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}=\frac{4}{\left(x-1\right).\left(x+1\right)}\)

MC: \(\left(x-1\right).\left(x+1\right)\)

\(\Leftrightarrow x^2+x+x+1-x^2+x+x-1=4\)

\(\Leftrightarrow x^2-x^2+x+x+x+x+1-1-4=0\)

\(\Leftrightarrow4x-4=0\)

\(\Leftrightarrow4.\left(x-1\right)=0\)

\(\Leftrightarrow\) 4 = 0 hoặc \(x-1=0\)

\(\Leftrightarrow\) 4 = 0 hoặc \(x=1\)

\(\Leftrightarrow\) 4 = 0 (Loại) hoặc \(x=1\) (Loại)

Vậy S = \(\left\{\varnothing\right\}\)

7) \(\frac{x+1}{x-1}+\frac{-4x}{x^2-1}=\frac{x-1}{x+1}\)

\(\Leftrightarrow\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{-4x}{\left(x-1\right).\left(x+1\right)}=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}\)

\(Mc:\left(x-1\right).\left(x+1\right)\)

\(\Leftrightarrow\) \(x^2+x+x+1-4x=x^2-x-x+1\)

\(\Leftrightarrow x^2-x^2+x+x-4x+x+x=-1+1\)

\(\Leftrightarrow0=0\) (Nhận)

Vậy S = \(\left\{x\in R;x\ne\pm1\right\}\)

0
4 tháng 11 2016

2x2 - 3x - 2 = 2x2 + x - 4x - 2 = x(2x + 1) - 2(2x + 1) = (x - 2)(2x + 1)

Bạn cần luyện tập phân tích đa thức thành nhân tử nha.

3) \(\frac{x-2}{x-5}\) \(-\frac{5}{x^2-5x}=\frac{1}{x}\) \(\Leftrightarrow\) \(\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\) \(\Leftrightarrow\frac{\left(x-2\right).\left(x+5\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x+5\right)}{x.\left(x-5\right)}\) \(\Leftrightarrow x^2+5x-2x-10-5=1x+5\) \(\Leftrightarrow x^2+5x-2x-1x-10-5-5\) = 0 \(\Leftrightarrow\) \(x^2+2x-20=0\) \(\Leftrightarrow x^2+2x-10x-20=0\) \(\Leftrightarrow\) (x\(^2\) + 2x) - (10x +...
Đọc tiếp

3) \(\frac{x-2}{x-5}\) \(-\frac{5}{x^2-5x}=\frac{1}{x}\)

\(\Leftrightarrow\) \(\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\)

\(\Leftrightarrow\frac{\left(x-2\right).\left(x+5\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x+5\right)}{x.\left(x-5\right)}\)

\(\Leftrightarrow x^2+5x-2x-10-5=1x+5\)

\(\Leftrightarrow x^2+5x-2x-1x-10-5-5\) = 0

\(\Leftrightarrow\) \(x^2+2x-20=0\)

\(\Leftrightarrow x^2+2x-10x-20=0\)

\(\Leftrightarrow\) (x\(^2\) + 2x) - (10x + 20) = 0

\(\Leftrightarrow\) x.(x + 2) - 10.(x + 2) = 0

\(\Leftrightarrow\)

4) \(\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x^2+7x}\)

\(\Leftrightarrow\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x\left(x+7\right)}\)

\(\Leftrightarrow\frac{\left(x-4\right).\left(x+7\right)}{x.\left(x+7\right)}-\frac{1.\left(x+7\right)}{x.\left(x+7\right)}=\frac{-7}{x.\left(x+7\right)}\)

\(\Leftrightarrow\) \(x^2+7x-4x-28-x-7=-7\)

\(\Leftrightarrow x^2+7x-4x-x-28-7+7=0\)

\(\Leftrightarrow\) x\(^2\) + 2x - 28 = 0

\(\Leftrightarrow\) x\(^2\) + 2x - 14x - 28 = 0

\(\Leftrightarrow\) (x\(^2\) + 2x) - (14x + 28) = 0

\(\Leftrightarrow\) x.(x + 2) - 14.(x + 2) = 0

\(\Leftrightarrow\) (x - 14) = 0 hoặc (x + 2) = 0

\(\Leftrightarrow\) x = 4 (Nhận) hoặc x = -2 (Loại)

5) \(\frac{x+2}{x-2}+\frac{x-2}{x+2}=\frac{8x}{x^2-4}\)

\(\Leftrightarrow\) \(\frac{\left(x+2\right).\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{\left(x-2\right).\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{8x}{\left(x-2\right).\left(x+2\right)}\)

\(\Leftrightarrow x^2+2x+2x+4+x^2-2x-2x+4=8x\)

\(\Leftrightarrow\) \(x^2+x^2+2x+2x-2x-2x-8x+4+4=0\)

\(\Leftrightarrow2x^2-8x+8=0\)

\(\Leftrightarrow\) 2x\(^2\) - 2x - 8x + 8 = 0

\(\Leftrightarrow\) 2x(x - 1) - 8(x - 1) = 0

\(\Leftrightarrow\) 2x - 8 = 0 hoặc x - 1 = 0

\(\Leftrightarrow\) 2x = 8 hoặc x = 1

\(\Leftrightarrow\) x = 4 (Nhận) hoặc x = 1 (Nhận)

Vậy S = {4; 1}

6) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)

\(\Leftrightarrow\) \(\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}=\frac{4}{\left(x-1\right).\left(x+1\right)}\)

\(\Leftrightarrow\) x\(^2\) + x + x + 1 - x\(^2\) + x + x - 1 = 4

\(\Leftrightarrow\) 4x - 4 = 0

\(\Leftrightarrow\) 4 (x - 1) =0

\(\Leftrightarrow\) x - 1 = 0 / 4 = 0

\(\Leftrightarrow\) x = 1 (Nhận)

Vậy S = {1}

7) \(\frac{x+1}{x-1}+\frac{-4x}{x^2-1}=\frac{x-1}{x+1}\)

\(\Leftrightarrow\) \(\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{-4x}{\left(x-1\right).\left(x+1\right)}=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x+1\right)}\)

\(\Leftrightarrow x^2+x+x+1-4x=x^2-x-x+1\)

\(\Leftrightarrow\) 0

Vậy S ={\(\varnothing\)}

0
4 tháng 11 2016

a)\(\frac{\left(x+2\right)P}{x-2}=\frac{\left(x+2\right)^2P}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)^2P}{x^2-4}=\frac{\left(x-1\right)Q}{x^2-4}\Rightarrow\left(x+2\right)^2P=\left(x-1\right)Q\)

\(\Rightarrow\frac{P}{Q}=\frac{x-1}{\left(x+2\right)^2}\)

b) Từ gt,ta có :\(\left(x+2\right)\left(x^2-2x+1\right)P=\left(x^2-1\right)\left(x-2\right)Q\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)^2P=\left(x-1\right)\left(x+1\right)\left(x-2\right)Q\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)P=\left(x+1\right)\left(x-2\right)Q\)

\(\Rightarrow\frac{P}{Q}=\frac{\left(x+1\right)\left(x-2\right)}{\left(x+2\right)\left(x-1\right)}=\frac{x^2-x-2}{x^2+x-2}\)

Ở đây có nhiều cặp đa thức (P ; Q) thỏa mãn lắm ! Mình xét P/Q để chỉ rằng chúng tỉ lệ với 2 đa thức ở vế phải

Ví dụ : Câu a : P = 2 - 2x thì Q = -2x2 - 8x - 8

4 tháng 11 2016

quy đồng 2 phân thức ở 2 bên dấu "="     =>   tử bằng nhau (có dạng A*P = B*Q)   => A=Q; B=P  (trường hợp A hoặc B hoặc cả A và B là tích của 2 đa thức thì triển khai tích đó thành đa thức) 

12 tháng 11 2016

Dùng hằng đẳng thức đáng nhớ thôi b

Ta có y2 - x2 = (y - x)(y + x)

Mà theo đêc bài thì mẫu có (y + x) rồi nên chỉ cần nhân cho (y - x) nữa là được

12 tháng 11 2016

Mình ko hiểu bạn muốn hỏi gì? Câu hỏi mập mờ quá!

6 tháng 2 2020

Hoặc bác muốn làm kiểu như này nhưng ko cần đặt cũng đc :V t đặt nhìn cho đỡ rối 

phải trừ 3ab(a+b) chứ nhỉ ???