Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
→ Số vân của bức xạ 1 được tính từ 1 đến 10 → Có 10 vân
→ Số vân của bức xạ 2 được tính từ 1 đến 6 → Có 6 vân.
Đáp án D
Nếu chỉ dùng ánh sáng có bước sóng λ1 thì trên đoạn MN có 10 + 6 = 16 vân sáng → MN = 15i1
Nếu chỉ dùng ánh sáng có bước sóng λ2 thì trên đoạn MN có 5 + 6 = 11 vân sáng → MN = 10i2
Đáp án A
Đáp án: A
+ Điều kiện vân sáng của λ1 trùng với vân sáng của λ2:
k2/k1 = λ1/λ2 = 0,42/0,56 = a/b = 3/4
+) Điều kiện vân sáng của λ1 trùng với vân sáng của λ3:
k3/k1 = λ1/λ3 = 0,42/0,63 = c/d = 2/3
+) Điều kiện vân sáng của λ2 trùng với vân sáng của λ3:
k3/k2 = λ2/λ3 = 0,56/0,63 = e/f = 8/9
→ Khoảng vân trùng i = b.d.λ1 = a.d.λ2 = b.c.λ3
hay i = 12λ1 = 9λ2 = 8λ3
Trong khoảng giữa hai vân sáng liên tiếp có màu giống màu vân trung tâm, có 2 vị trí vân sáng bức xạ 1 trùng với bức xạ 2, 3 vị trí vân sáng bức xạ 1 trùng với bức xạ 3.
=> Số vân sáng quan sát được là N = (12 – 1)+ (9 – 1) + (8 – 1) – (2 + 3) = 21 vân
(2 vân sáng trùng nhau tính là 1)
Đáp án B
Xét các tỉ số :
+ A B i 1 = 6 , 72 0 , 48 = 14 → trên đoạn AB có 15 vị trí cho vân sáng của bức xạ λ 1
+ A B i 2 = 6 , 72 0 , 64 = 10 , 5 → trên đoạn AB có 11 vị trí cho vân sáng của bức xạ λ 2
→ Điều kiện trùng nhau của hai hệ vân sáng: k 1 k 2 = i 2 i 1 = 4 3
Vì việc lặp lại có tính tuần hoàn của hệ vân nên nếu ta xem tại A là vân trung tâm thì tại B là vân sáng bậc 13 của bức xạ λ 1 và vân tối bậc 10 của bức xạ λ 2
Trên đoạn này có 4 vị trí trùng nhau của hai bức xạ ứng với k 1 = 0, 4, 8, 12
Vậy số vân sáng quan sát được là 15 + 11 – 4 = 22.
Đáp án B
Vị trí trùng màu với vân trung tâm là vị trí trùng nhau của vân sáng 3 bức xạ :
→ Vị trí trùng nhau gần vân trung tâm nhất ứng với k1 = 15, k2 = 12 và k3 = 10
+ Sự trùng nhau của hai bức xạ λ1 và λ2 trong khoảng này
→
có 2 vị trí trùng nhau của hai hệ vân ứng với k1 = 5, 10
+ Sự trùng nhau của hai bức xạ λ1 và λ3 trong khoảng này :
→ có 4 vị trí trùng nhau của hai hệ vân ứng với k1 = 3, 6, 9 và 12
+ Sự trùng nhau của hai bức xạ λ2 và λ3 trong khoảng này :
→ có 1 vị trí trùng nhau của hai hệ vân ứng với k2 = 6
Vậy số vị trí cho vân đơn sắc là 14 + 11 + 9 – 2.2 – 2.4 – 2.1 = 20
Phương pháp:
Áp dụng điều kiện trùng nhau của các vân sáng trong giao thoa sóng ánh sáng
Cách giải: Đáp án B
Vị trí trùng màu với vân trung tâm là vị trí trùng nhau của vân sáng 3 bức xạ : x1 = x2 = x3
=> 4k1 = 5k2 = 6k3
→ Vị trí trùng nhau gần vân trung tâm nhất ứng với k1 = 15, k2 = 12 và k3 = 10
+ Sự trùng nhau của hai bức xạ λ1 và λ2 trong khoảng này
→ có 2 vị trí trùng nhau của hai hệ vân ứng với k1 = 5, 10
+ Sự trùng nhau của hai bức xạ λ1 và λ3 trong khoảng này:
→ có 4 vị trí trùng nhau của hai hệ vân ứng với k1 = 3, 6, 9 và 12
+ Sự trùng nhau của hai bức xạ λ2 và λ3 trong khoảng này :
→ có 1 vị trí trùng nhau của hai hệ vân ứng với k2 = 6
Vậy số vị trí cho vân đơn sắc là 14 + 11 + 9 – 2.2 – 2.4 – 2.1 = 20
\(i=\frac{F\lambda}{a}\)
tỉ lệ khoảng vân chính bằng tỉ lệ bước sóng
\(i_1:i_2:i_3=\lambda_1:\lambda_2:\lambda_3=6:7:8\)
Bội chung nhỏ nhất của 3 số này là 168
Vân sáng số 28 của 1 trùng với 24 của 2 và 21 của 3
Đầu bài hỏi tổng số vân sáng của 3 bức xạ nên không cần xét vân sáng mà 2 màu trùng nhau
tổng đó sẽ là 27+23+20=70