K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 1 2021

Đặt \(\overrightarrow{PB}=x\overrightarrow{BC}\)

\(\overrightarrow{PM}=\overrightarrow{PB}+\overrightarrow{BM}=x.\overrightarrow{BC}-\dfrac{1}{3}\overrightarrow{AB}\)

\(\overrightarrow{PN}=\overrightarrow{PC}+\overrightarrow{CN}=\left(x+1\right)\overrightarrow{BC}-\dfrac{1}{2}\overrightarrow{AC}=\left(x+1\right)\overrightarrow{BC}-\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BC}\right)\)

\(=\left(x+\dfrac{1}{2}\right)\overrightarrow{BC}-\dfrac{1}{2}\overrightarrow{AB}\)

P, M, N thẳng hàng \(\Rightarrow\dfrac{x+\dfrac{1}{2}}{x}=\dfrac{\dfrac{1}{2}}{\dfrac{1}{3}}\Rightarrow x=1\) \(\Rightarrow\overrightarrow{PB}=\overrightarrow{BC}\)

\(\Rightarrow\) B là trung điểm PC \(\Rightarrow P\left(-6;5\right)\)

Nếu bạn chưa học bài pt đường thẳng thì làm cách trên, còn học rồi thì đơn giản là thiết lập 2 pt đường thẳng BC và MN là xong

9 tháng 8 2019

Hok nhanh phết đấy =))

\(\left|\overrightarrow{CD}\right|=\left|\overrightarrow{BA}\right|\Rightarrow\sqrt{\left(x_D-x_c\right)^2+\left(y_D-y_C\right)^2}=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}\)

\(\Leftrightarrow\sqrt{\left(x_D-0\right)^2+\left(y_D-4\right)^2}=\sqrt{\left(1-3\right)^2+\left(-2-2\right)^2}\)

\(\Leftrightarrow x_D^2+y_D^2-8y_D+16=20\)

\(\Leftrightarrow x_D^2+y^2_D-8y_D=4\) (1)

\(\left|\overrightarrow{DA}\right|=\left|\overrightarrow{CB}\right|\Rightarrow\sqrt{\left(x_A-x_D\right)^2+\left(y_A-y_D\right)^2}=\sqrt{\left(x_B-x_C\right)^2+\left(y_B-y_C\right)^2}\)

\(\Leftrightarrow\left(1-x_D\right)^2+\left(-2-y_D\right)^2=\left(3-0\right)^2+\left(2-4\right)^2\)

\(\Leftrightarrow1-2x_D+x_D^2+4+4y_D+y_D^2=13\)

\(\Leftrightarrow x_D^2+y_D^2-2x_D+4y_D=8\)(2)

từ (1) và (2) suy ra hpt r giải ra là xong

9 tháng 8 2019

3/ Xét VP trc

Ta có M là TĐ AB\(\Rightarrow\overrightarrow{AM}=\frac{\overrightarrow{AB}}{2}\)

\(\Rightarrow VP=\frac{2}{3}.\frac{1}{2}.\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}\)

vì G là trọng tâm\(\Rightarrow\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AD}\)

Theo quy tắc TĐ:\(\overrightarrow{AD}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\)

\(\Rightarrow\overrightarrow{AG}=\frac{2}{3}.\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}=VP\)

câu 4 thầy mk chưa dạy nên chưa nghĩ ra cách lm, chắc để tối nghĩ :))

16 tháng 12 2020

Đủ đề chưa v.

16 tháng 12 2020

Đủ đấy bạn, đề hsg toán

26 tháng 4 2017


A C B M G

a)Theo bài ra => Tam giác ABC vuông cân ở A

M(1;-1) là trung điểm BC và G\(\left(\dfrac{2}{3};0\right)\) là trọng tâm

=>\(\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AG}\)

Giả sử A có tọa độ (a;b)

=>\(\left\{{}\begin{matrix}1-a=\dfrac{2}{3}\left(\dfrac{2}{3}-a\right)\\-1-b=-\dfrac{2}{3}b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}\\b=-3\end{matrix}\right.\)\(\Rightarrow A\left(\dfrac{5}{3};-3\right)\)

b)Do tam giác ABC vuông cân ở A=>GM vuông góc với BC

Ta có: \(\overrightarrow{GM}=\left(\dfrac{1}{3};-1\right)\)=>VTPT của đường thẳng BC là: \(\overrightarrow{n}=\left(1;-3\right)\) có M(1;-1) thuộc BC

=>phương trình đường thẳng BC:

1(x-1)-3(y+1)=0

hay x-3y-4=0

=> phương trình tham số của BC:\(\left\{{}\begin{matrix}x=3t+4\\y=t\end{matrix}\right.\)

=> tồn tại số thực t để B(3t+4;t) thuộc đường thẳng BC

MB=MA(do tam giác ABC vuông cân ở A,M là trung điểm BC)

=>\(\overrightarrow{MB}^2=\overrightarrow{MA}^2\)

=>(3t+3)2+(t+1)2=\(\left(\dfrac{2}{3}\right)^2+\left(-2\right)^2=\dfrac{40}{9}\)

=> \(t=-\dfrac{1}{3}\)hoặc \(t=-\dfrac{5}{3}\)

TH1: \(t=-\dfrac{1}{3}\)=>B\(\left(3;-\dfrac{1}{3}\right)\) ,do M(1;-1) là trung điểm BC=>C\(\left(-1;-\dfrac{5}{3}\right)\)

TH2:\(t=-\dfrac{5}{3}\)=>B\(\left(-1;-\dfrac{5}{3}\right)\),do M(1;-1) là trung điểm BC=>C\(\left(3;-\dfrac{1}{3}\right)\)

c) Tam giác ABC vuông cân ở A=>M(1;-1) là tâm đường tròn ngoại tiếp và MA là bán kính=>R2=MA2=\(\dfrac{40}{9}\)

Phương trình đường tròn ngoại tiếp tam giác ABC:

(C): \(\left(x-1\right)^2+\left(y+1\right)^2=\dfrac{40}{9}\)

30 tháng 5 2017

Hỏi đáp Toán

30 tháng 5 2017