Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Con lắc chuyển động nên nó có động năng.
- Khi con lắc chuyển động, nó có sự thay đổi độ cao so với mốc tính thế năng (giả sử chọn ở VTCB) nên nó có thế năng.
Thời gian con lắc thực hiện 100 dao động là \(\Delta t\).
Chu kì dao động của con lắc là \(T = \frac{{\Delta t}}{n} = \frac{{\Delta t}}{{100}}\).
Gia tốc rơi tự do là g. \(T = 2\pi \sqrt {\frac{l}{g}} \Rightarrow g = \frac{{l{{\left( {2\pi } \right)}^2}}}{{{T^2}}} = \frac{{l{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{\Delta {t^2}}}\).
Lần lượt thay các giá trị l và \(\Delta t\)được cho trong Bảng 2.1, ta được các giá trị gia tốc rơi tự do:
\({l_1} = 500mm = 0,5m\); \(\Delta {t_1} = 141,7s\); \({g_1} = \frac{{{l_1}{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{\Delta {t_1}^2}} = \frac{{0,5.{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{141,{7^2}}} \approx 9,8308\)(m/s2).
\({l_2} = 1000mm = 1m\); \(\Delta {t_2} = 200,6s\); \({g_2} = \frac{{{l_2}{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{\Delta {t_2}^2}} = \frac{{1.{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{200,{6^2}}} \approx 9,8107\)(m/s2).
\({l_3} = 1500mm = 1,5m\);\(\Delta {t_3} = 245,8s\);\({g_3} = \frac{{{l_3}{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{\Delta {t_3}^2}} = \frac{{1,5.{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{245,{8^2}}} \approx 9,8014\)(m/s2).
\({l_4} = 2000mm = 2,0m\);\(\Delta {t_4} = 283,5s\);\({g_4} = \frac{{{l_4}{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{\Delta {t_4}^2}} = \frac{{2,0.{{\left( {2\pi } \right)}^2}{{.10}^4}}}{{283,{5^2}}} \approx 9,8239\) (m/s2).
Gia tốc rơi tự do tại địa phương là:
\(\bar g = \frac{{{g_1} + {g_2} + {g_3} + {g_4}}}{4} = \frac{{9,8308 + 9,8107 + 9,8014 + 9,8239}}{4} = 9,8167\)(m/s2).
tham khảo
1. Mô tả dao động điều hòa của con lắc đơn:
+ Tại thời điểm ban đầu t = 0, con lắc đơn đang ở vị trí biên dương (x = A = 40 cm) và sẽ dịch chuyển về vị trí cân bằng, con lắc đơn ở vị trí x = 0 khi t = 1 s.
+ Tại thời điểm t = 1 s, con lắc đơn bắt đầu chuyển động về phía biên âm và ở vị trí x = - A = - 40 cm khi t = 2 s.
+ Tại thời điểm t = 2 s, con lắc đang ở vị trí biên âm sẽ dịch chuyển về vị trí cân bằng và ở tại vị trí x = 0 khi t = 3 s.
2. Sử dụng thước kẻ để xác định li độ của con lắc tại các thời điểm.
Cách làm: Từ các thời điểm bài toán yêu cầu, dựng đường thẳng vuông góc với trục thời gian tại vị trí thời điểm đó, đường thẳng cắt đồ thị tại điểm nào thì ta kẻ đường thẳng song song với trục thời gian đi qua điểm cắt đó. Đường thẳng song song này cắt trục Ox tại điểm nào thì đó là li độ cần tìm.
Tại thời điểm t = 0 vật bắt đầu xuất phát nên\(\left\{{}\begin{matrix}A=40cm\\x=40cm\end{matrix}\right.\)
Tại thời điểm t = 0,5 s: \(\left\{{}\begin{matrix}A=40cm\\x=20\sqrt{2}cm\end{matrix}\right.\)
Tại thời điểm t = 2,0 s, con lắc đang ở biên âm\(\left\{{}\begin{matrix}A=40cm\\x=-40cm\end{matrix}\right.\)
Ta có:
\(T=2\pi\sqrt{\dfrac{l}{g}}\\ \Rightarrow g=\dfrac{4\pi^2\cdot l}{T^2}=1,6m/s^2\)