Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a, f(x) - g(x) + h(x) = x3 - 2x2 + 3x +1 - x3 - x + 1 +2x2 - 1
=(x3 - x3) + (-2x2 + 2x2) + (3x - x) + (1 + 1 - 1)
=2x + 1
b, f(x) - g(x) + h(x) = 0
<=> 2x + 1 = 0
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2 là nghiệm của đa thức f(x) - g(x) + h(x)
2/ a, 5x + 3(3x + 7)-35 = 0
<=> 5x + 9x + 21 - 35 = 0
<=> 14x - 14 = 0
<=> 14(x - 1) = 0
<=> x-1 = 0
<=> x = 1
Vậy 1 là nghiệm của đa thức 5x + 3(3x + 7) -35
b, x2 + 8x - (x2 + 7x +8) -9 =0
<=> x2 + 8x - x2 - 7x - 8 - 9 =0
<=> (x2 - x2) + (8x - 7x) + (-8 -9)
<=> x - 17 = 0
<=> x =17
Vậy 17 là nghiệm của đa thức x2 + 8x -(x2 + 7x +8) -9
3/ f(x) = g (x) <=> x3 +4x2 - 3x + 2 = x2(x + 4) + x -5
<=> x3 +4x2 - 3x + 2 = x3 + 4x2 + x - 5
<=> -3x + 2 = x - 5
<=> -3x = x - 5 - 2
<=> -3x = x - 7
<=>2x = 7
<=> x = 7/2
Vậy f(x) = g(x) <=> x = 7/2
4/ có k(-2) = m(-2)2 - 2(-2) +4 = 0
=> 4m + 4 + 4 = 0
=> 4m + 8 = 0
=> 4m = -8
=> m = -2
Ta có h(x) = f(x) - g(x)
= -x5 + 2x4 - x2 - 1 - (-6 + 2x + 3x3 - x4 - 3x5)
= 2x5 + 3x4 - 3x3 - x2 - 2x + 5
q(x) = g(x) - f(x) = -[f(x) - g(x)]
- h(x) = -2x5 - 3x4 + 3x3 + x2 + 2x - 5 (1)
Ta có h(1) = 2.15 + 3.14 - 3.13 - 12 - 2.1 + 5 = 4
h(-1) = 2(-1)5 + 3.(-1)4 - 3(-1)3 - (-1)2 - 2(-1) + 5
= 10
h(-2) = 2(-2)5 + 3.(-2)4 - 3(-2)3 - (-2)2 - 2(-2) + 5
= 17
h(2) = 2.25 + 3.24 - 3.23 - 22 - 2.2 + 5 = 85
Vì h(x) = -g(x)
=> g(1) = - 4 ; g(-1) = 10 ; g(2) = -85 ; g(-2) = 17
b)
Từ (1) => h(x) = -g(x)
\(\left\{\begin{matrix}f\left(x\right)=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\left(1\right)\\g\left(x\right)=-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\left(2\right)\end{matrix}\right.\)
Sắp xếp số mũ của (ẩn theo một trình tự, Thường, nên giảm dần"
Tính f(x)+g(x) lấy (1) cộng (2)
\(f\left(x\right)+g\left(x\right)=\left(1-1\right)x^5+\left(7+5\right)x^4+\left(-9-2\right)x^3+\left(-2+4\right)x^2+\left(-\dfrac{1}{4}\right)x+\left(-\dfrac{1}{4}\right)\)
\(f\left(x\right)+g\left(x\right)=12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
Tính f(x)-g(x) lấy (1) trừ (2)
\(f\left(x\right)-g\left(x\right)=2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x+\dfrac{1}{4}\)
a, f (x) + g (x)
= \(-6x^2+x^3-8+12x+x^3-3x^2+6x-8\)
= \(-9x^2+2x^3-16+18x\)
g (x) - f (x)
= \(x^3-3x^2+6x-8+6x^2-x^3+8-12x\)
= \(3x^2-6x\)
b, Tính g (-1)
g (x) với x = (-1)
ta có : g (-1) = \((-1)^3-3.(-1)^2+6.(-1)-8\)
= \((-1)-3-6-8\)
= (-18)
a)+)\(f\left(x\right)=3x^4-5x^3-x^2+1007\)
\(\Rightarrow f\left(x\right)=\left(3x^2-5x-1\right)x^2+1007\)
+)\(g\left(x\right)=2x^4+3x^3-1007\)
\(\Rightarrow g\left(x\right)=\left(2x^2+3x\right)x^2-1007\)
\(\Rightarrow f\left(x\right)-g\left(x\right)-2014=\left[\left(3x^2-5x-1\right)x^2+1007\right]-\left[\left(2x^2+3x\right)x^2-1007\right]-2014\)
\(f\left(x\right)-g\left(x\right)-2014=\left(3x^2-5x-1\right)x^2+1007-\left(2x^2+3x\right)x^2+1007-2014\)
\(f\left(x\right)-g\left(x\right)-2014=\left[\left(3x^2-5x-1\right)-\left(2x^2+3x\right)\right]x^2+\left(1007+1007-2014\right)\)
\(f\left(x\right)-g\left(x\right)-2014=3x^2-5x-1-2x^2-3x\)
\(\Rightarrow f\left(x\right)-g\left(x\right)-2014=x^2-2x-1=\left(x-1\right)^2\)
b)\(2014+g\left(x\right)-h\left(x\right)=f\left(x\right)\)
\(\Rightarrow-h\left(x\right)=f\left(x\right)-g\left(x\right)-2014\)
\(\Rightarrow-h\left(x\right)=\left(x-1\right)^2\)
\(\Rightarrow h\left(x\right)=-\left[\left(x-1\right)^2\right]\)
Chúc bạn học tốt
a)
Thương Q(x) = 2x2 – x + 5
Dư R(x) = 2x – 1
Ta có: F(x) = 3x2 . (2x2 – x + 5) + 2x – 1
b)
Thương Q(x) = 4x2 + 2x – 2
Dư R(x) = -x – 1
Ta có: F(x) = (3x2 + x + 1) . (4x2 + 2x – 2) – x – 1