K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

- Xét phương trình hoành độ giao điểm : \(x^2=2x+3\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow x^2-2x+1-4=\left(x-1\right)^2-2^2=0\)

\(\Leftrightarrow\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy P giao với đường thẳng tại 2 điểm trong mptđ .

Phương trình hoành độ giao điểm của parabol \(y=x^2\) và đường thẳng y=2x+3 là: 

\(x^2=2x+3\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow x^2-3x+x-3=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy: Số giao điểm của parabol \(y=x^2\) và đường thẳng y=2x+3 là 2 giao điểm

b: Thay m=2 vào (d), ta được:

y=2x-2+1=2x-1

Phương trình hoành độ giao điểm là:

\(x^2=2x-1\)

=>\(x^2-2x+1=0\)

=>(x-1)^2=0

=>x-1=0

=>x=1

Thay x=1 vào (P), ta được:

\(y=1^2=1\)

Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)

b: Phương trình hoành độ giao điểm là:

\(x^2=2x-m+1\)

=>\(x^2-2x+m-1=0\)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)

=4-4m+4

=-4m+8

Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0

=>-4m+8>0

=>-4m>-8

=>m<2

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)

y1,y2 thỏa mãn gì vậy bạn?

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=2\left(m-1\right)x+5-2m\)

\(\Leftrightarrow x^2-2\left(m-1\right)x-5+2m=0\)

Áp dụng hệ thức Vi-et, ta được:

\(x_1+x_2=2\left(m-1\right)\)

Ta có: \(x_1+x_2=6\)

\(\Leftrightarrow2\left(m-1\right)=6\)

\(\Leftrightarrow m-1=3\)

hay m=4

Vậy: m=4

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm:

\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)

a. Khi \(m=-1\), (1) trở thành:

\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)

Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)

b. 

\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m

Hay (d) cắt (P) tại 2 điểm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)

\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)

\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)

25 tháng 3 2022

1) y= 2x-4

HD: y=ax+b

.... song song: a=2 và b≠-1

..... A(1;-2)  => x=1 và y=-2 và Δ....

a+b=-2

Hay 2+b=-2 (thay a=2) 

<=> b=-4

KL:................

2) Xét PT hoành độ giao điểm của (P) và (d)

x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)

*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.

*) Theo hệ thức Viet ta có: 

S=x1+x2=2(m-1) và P=x1.x2=m-3

*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

Thay S và P vào M ta có:

\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)

 

Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)\(\dfrac{15}{4}\)

Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0

 

NV
30 tháng 3 2023

a. Em tự giải

b.

Phương trình hoành độ giao điểm (d) và (P):

\(x^2=\left(m+2\right)x-m+3\Leftrightarrow x^2-\left(m+2\right)x+m-3=0\)

\(\Delta=\left(m+2\right)^2-4\left(m-3\right)=m^2+16>0;\forall m\)

(d) cắt (P) tại 2 điểm phân biệt với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m-3\end{matrix}\right.\)

\(x_1^2+x_2^2+x_1x_2\le5\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2\le5\)

\(\Leftrightarrow\left(m+2\right)^2-\left(m-3\right)\le5\)

\(\Leftrightarrow m^2+3m+2\le0\)

\(\Leftrightarrow\left(m+1\right)\left(m+2\right)\le0\)

\(\Rightarrow-2\le m\le-1\)

a: khi m=3 thì (d): y=5x

PTHĐGĐ là:

x^2=5x

=>x=0 hoặc x=5

=>y=0 hoặc y=25

b:

PTHĐGĐ là:

x^2-(m+2)x+m+3=0

Δ=(m+2)^2-4(m+3)

=m^2+4m+4-4m-12=m^2-8

Để (d) cắt (P) tại 2 điểm pb thì m^2-8>0

=>m>2 căn 2 hoặc m<-2 căn 2

x1^2+x2^2+x1x2<=5

=>(x1+x2)^2-x1x2<=5

=>(m+2)^2-m-3<=5

=>m^2+4m+4-m-3-5<=0

=>m^2+3m-4<=0

=>(m+4)(m-1)<=0

=>-4<=m<=1

28 tháng 8 2023

\(\left\{{}\begin{matrix}\left(P\right):y=x^2\\\left(d\right):y=-x+2\end{matrix}\right.\)

a) Tọa độ giao điểm của (P) và (Q) là nghiệm của hệ phương trình

\(\left\{{}\begin{matrix}y=x^2\\y=-x+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=x^2\\x^2=-x+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=x^2\\x^2+x-2=0\left(1\right)\end{matrix}\right.\)

\(pt\left(1\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\) \(\left(a+b+c=1+1-2=0\right)\)

\(hpt\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\end{matrix}\right.\)

Vậy tọa độ giao điểm của (P) và (Q) là \(A\left(1;1\right)\&B\left(-2;4\right)\)

 

28 tháng 8 2023

a) Phương trình hoành độ giao điểm : 

x2 = - x + 2

<=> (x - 1)(x + 2)  = 0 

<=> \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Với x = 1 ta được y = 1

Với x = -2 ta được y = 4

Vậy tọa độ giao điểm là A(1; 1) ; B(-2;4)

b) Gọi C(-2 ; 0) ; D(1;0) 

ta được \(S_{AOB}=S_{ABCD}-S_{BOC}-S_{AOD}\)

\(=\dfrac{\left(BC+AD\right).CD}{2}-\dfrac{BC.CO}{2}-\dfrac{AD.DO}{2}\)

\(=\dfrac{\left(4+1\right).3}{2}+\dfrac{4.2}{2}+\dfrac{1.1}{2}=12\) (đvdt) 

10 tháng 1 2019

1) Xác định được ít nhất hai điểm phân biệt thuộc đường thẳng dChẳng hạn:  A ( − 3 ; 0 ) ;   B ( 0 ; 3 ) .

Xác định được đỉnh và ít nhất hai điểm thuộc (P) . Chẳng hạn :  O ( 0 ; 0 ) ;   C ( 6 ; 9 ) ;   E ( − 6 ; 9 ) .

Đồ thị

2) Phương trình hoành độ giao điểm:  1 4 x 2 = x + 3 ⇔ 1 4 x 2 − x − 3 = 0 ⇔ x = − 2  hoặc x= 6

Tọa độ giao điểm là  D ( − 2 ; 1 )   v à   C ( 6 ; 9 ) .  

 

a: loading...

b: PTHĐGĐ là:

x^2+x-2=0

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

=>y=4 hoặc y=1