Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để tìm tọa độ tâm và bán kính của đường tròn ©, ta cần viết lại phương trình của nó dưới dạng chuẩn:
\begin{align*}
x^2 + y^2 - 2x + 6y - 2 &= 0 \
\Leftrightarrow (x-1)^2 + (y+3)^2 &= 14
\end{align*}
Vậy, tọa độ tâm của đường tròn © là $(1,-3)$ và bán kính của đường tròn © là $\sqrt{14}$.
b) Đường tròn có tâm $I(4,3)$ và đi qua $A(-4,1)$ có phương trình là:
$$(x-4)^2 + (y-3)^2 = (-4-4)^2 + (1-3)^2 = 20$$
c) Để tìm phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d: 3x+4y-4=0$ tại hai điểm $M$ và $N$ sao cho $MN=6$, ta có thể làm như sau:
Tìm giao điểm $H$ của đường thẳng $d$ và đường vuông góc với $d$ đi qua $I$.Tìm hai điểm $M$ và $N$ trên đường thẳng $d$ sao cho $HM=HN=3$.Xây dựng đường tròn (C') có tâm là $I$ và bán kính bằng $IN=IM=\sqrt{3^2+4^2}=5$.
Để tìm giao điểm $H$, ta cần tìm phương trình của đường thẳng vuông góc với $d$ đi qua $I$. Đường thẳng đó có phương trình là:
$$4x - 3y - 7 = 0$$
Giao điểm $H$ của đường thẳng này và $d$ có tọa độ là $(\frac{52}{25}, \frac{9}{25})$.
Để tìm hai điểm $M$ và $N$, ta có thể sử dụng công thức khoảng cách giữa điểm và đường thẳng. Khoảng cách từ điểm $H$ đến đường thẳng $d$ là:
$$d(H,d) = \frac{|3\cdot \frac{52}{25} + 4\cdot \frac{9}{25} - 4|}{\sqrt{3^2+4^2}} = \frac{1}{5}$$
Vậy, hai điểm $M$ và $N$ cách $H$ một khoảng bằng $\frac{3}{5}$ và $\frac{4}{5}$ đơn vị theo hướng vuông góc với $d$. Ta có thể tính được tọa độ của $M$ và $N$ như sau:
$$M = \left(\frac{52}{25} - \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{3}{5}\cdot 3\right) = \left(\frac{12}{25}, \frac{54}{25}\right)$$
và
$$N = \left(\frac{52}{25} + \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{4}{5}\cdot 3\right) = \left(\frac{92}{25}, \frac{27}{5}\right)$$
Cuối cùng, phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d$ tại hai điểm $M$ và $N$ sao cho $MN=6$ là:
$$(x-4)^2 + (y-3)^2 = 5^2$$
Bài 38:
Thay phương trình d2 vào d1 ta được:
\(2\left(-1+3t\right)+\left(2+t\right)-7=0\)
\(\Leftrightarrow7t-7=0\Rightarrow t=1\)
\(\Rightarrow\left\{{}\begin{matrix}m=-1+3t=2\\n=2+t=3\end{matrix}\right.\)
\(\Rightarrow P=7\)
Bài 39:
Gọi tọa độ A(a;0) và tọa độ B(0;b)
Do M là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}\frac{a+0}{2}=3\\\frac{b+0}{2}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(6;0\right)\\B\left(0;2\right)\end{matrix}\right.\)
Phương trình AB: \(\frac{x}{6}+\frac{y}{2}=1\Leftrightarrow x+3y-6=0\)
Bài 40:
d có 1 vtcp là \(\left(3;-4\right)\)
Gọi d' là đường thẳng qua M và vuông góc d \(\Rightarrow\) d' có 1 vtpt là \(\left(3;-4\right)\)
Phương trình d':
\(3\left(x-2\right)-4\left(y+5\right)=0\Leftrightarrow3x-4y-26=0\)
N là giao của d và d' nên tọa độ N thỏa mãn:
\(3\left(-7+3t\right)-4\left(2-4t\right)-26=0\Rightarrow t=\frac{11}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x_N=-7+3t=-\frac{2}{5}\\y_N=2-4t=-\frac{34}{5}\end{matrix}\right.\) \(\Rightarrow N\left(-\frac{2}{5};-\frac{34}{5}\right)\)
Bài 35:
Do \(AB//CD\) nên đường thẳng AB nhận \(\left(2;5\right)\) là 1 vtpt
Phương trình AB:
\(2\left(x-4\right)+5\left(y+1\right)=0\Leftrightarrow2x+5y-3=0\)
Bài 36:
Do đường thẳng song song trục hoành nên có dạng \(y=a\)
Do đường thẳng qua A(1;3) nên pt là \(y=3\)
Bài 37:
Do thẳng thẳng vuông góc trục hoành nên có dạng \(x=a\)
Đường thẳng qua A(1;3) nên có pt: \(x=1\)
I(x,y) có tung độ dương nên y>0 và thuộc (d)
nên I(x;-3x-4)
y>0
=>-3x-4>0
=>-3x>4
=>x<-4/3
Theo đề, ta có: d(I;Ox)=d(I;Oy)=R
(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|
=>3x+4=x hoặc -3x-4=x
=>2x=-4 hoặc -4x=4
=>x=-2(nhận) hoặc x=-1(loại)
=>I(-2;2)
R=|2|=2
=>(C): (x+2)^2+(y-2)^2=4
=>B
I(x,y) có tung độ dương nên y>0 và thuộc (d)
nên I(x;-3x-4)
y>0
=>-3x-4>0
=>-3x>4
=>x<-4/3
Theo đề, ta có: d(I;Ox)=d(I;Oy)=R
(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|
=>3x+4=x hoặc -3x-4=x
=>2x=-4 hoặc -4x=4
=>x=-2(nhận) hoặc x=-1(loại)
=>I(-2;2)
R=|2|=2
=>(C): (x+2)^2+(y-2)^2=4
=>B
Chọn A.
Phương trình đường tròn (C) tâm I(-3;4), bán kính R = 6 là:
[x - (-3) ] 2 + (y - 4 ) 2 = 6 2 ⇒ (x + 3 ) 2 + (y - 4 ) 2 = 36