K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2022

Hoành độ giao điểm tm (P) ; (d) tm pt 

\(x^2-2x-m+2=0\)

\(\Delta'=1-\left(-m+2\right)=m-1\)

Để (P) cắt (d) tại 2 điểm pb khi m > 1 

Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m+2\end{cases}}\)

Ta có \(\left(x_1-x_2\right)^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)

Thay vào ta được \(4-4\left(-m+2\right)=4\Leftrightarrow4m-4=4\Leftrightarrow m=2\left(tm\right)\)

26 tháng 3 2022

Xét ....

x2=2x+m-2 ⇔x2-2x-m+2=0 (1)

để (d) cắt (P) tại hai điểm phân biệt thì (1) có 2 nghiệm PB. 

Hay Δ'>0 Hay: 1+m-2>0 ⇔ m-1>0 ⇔m>1.

Với m>1 thì (1) có 2 nghiệm pb x1; x2. Theo hệ thức Viet ta có:

S=x1+ x2=2 và P=x1. x2=-m+2

Ta có: |x1-x2|=2

⇔( |x1-x2|)2=22

⇔(x1-x2)2=4 ⇔\(x^2_1-2x_1x_2+x^2_2=4\Leftrightarrow x_1^2+x_2^2+2x_1x_2-2x_1x_2-2x_1x_2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\)=4

⇔S2-4P=4 Hay 22-4(-m+2)=4 ⇔4m=8 ⇔m=2 (TM)

Vậy ..........

 

25 tháng 3 2022

a, Ta có A thuộc (P) <=> \(y_A=x^2_A\Rightarrow y_A=4\)Vậy A(-2;4) 

b, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2x-m^2+2m=0\)

\(\Delta=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)

Để pt có 2 nghiệm pb khi m khác 1 

c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)

Vì x1 là nghiệm pt trên nên \(x_1^2=2x_1+m^2-2m\)

Thay vào ta được \(2x_1+m^2+2x_2=5m\)

\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)

\(\Rightarrow m^2-5m+4=0\Leftrightarrow m=1\left(ktm\right);m=4\left(tm\right)\)

31 tháng 3 2022

b) x2-2x-m2+2m=0

Δ'= (-1)2+m2-2m= (m-1)2>0 thì m≠1

KL:....

c) với m≠1 thì PT có 2 nghiệm PB

C1. \(x_1=1-\sqrt{\left(m-1\right)^2}=1-\left|m-1\right|\)

tt. tính x2

C2. 

Theo Viets: \(S=x_1+x_2=2;P=x_1x_2=-m^2+2m\)

Ta có: \(x_1^2+2x_2=3m\Rightarrow x_1^2=3m-2x_2\)

Từ \(S=x_1+x_2=2\Rightarrow x_2=2-x_1\)Thay vào P ta có:

 \(P=x_1\left(2-x_1\right)=-m^2+2m\)

⇔2x1-x12=-m2+2m

⇔2x1- (3m-2x2)=-m2+2m (Thay x12=3m-2x2)

⇔2x1-3m+2x2=-m2+2m⇔2(x1+x2)=-m2+5m ⇔2.2=-m2+5m ⇔m=4 (TM) và m=1(KTM)

Vậy với m=4 thì .....

26 tháng 4 2020

a) PT hoành dộ giao điểm d và (P):

x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)

d tiếp xúc với (P) <=> m=-2 tìm được x=-1

Tọa độ điểm A(-1;1)

b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1

Điều kiện để 2 giao điểm khác phía trục tung là:m >-1

Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)

Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)

14 tháng 3 2022

ĐK \(x_2\ge0;\)

Phương trình hoành độ giao điểm 

x2 = mx + m + 1

\(\Leftrightarrow x^2-mx-m-1=0\)

Có \(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\ge0\)

\(\Rightarrow\)Phương trình có nghiệm với mọi m

Phương trình 2 nghiệm \(\hept{\begin{cases}x_1=\frac{m-\left|m+2\right|}{2}\\x_2=\frac{m+\left|m+2\right|}{2}\end{cases}}\)

Khi m + 2 < 0 thì x1 = m + 1 ; x2 = -1 (loại)

khi m + 2 \(\ge0\)thì x1 = -1 ; x2 = m + 1

\(\Rightarrow x_1=-1;x_2=m+1\)nghiệm phương trình 

Khi đó ta có -1 + m - m = \(\sqrt{m+1}-\sqrt[3]{8}\)

\(\Leftrightarrow\sqrt{m+1}=1\Leftrightarrow m=0\)(tm) 

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2

1: Thay x=-1 và y=1 vào (d), ta được:

-2(a+1)+15-2a=1

=>-2a+2+15-2a=1

=>-4a+17=1

=>-4a=-16

hay a=4

2: Phươg trình hoành độ giao điểm là:

\(x^2-\left(2a+2\right)x-15+2a=0\)

\(\text{Δ}=\left(2a+2\right)^2-4\left(2a-15\right)\)

\(=4a^2+8a+4-8a+60\)

\(=4a^2+64>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

2: Theo đề, ta có: \(x_1+x_2+x_1^2+x_2^2=2a+27\)

\(\Leftrightarrow\left(x_1+x_2\right)+\left(x_1+x_2\right)^2-2x_1x_2=2a+27\)

\(\Leftrightarrow2a+27=\left(2a+2\right)+\left(2a+2\right)^2-2\left(2a-15\right)\)

\(\Leftrightarrow4a^2+8a+4+2a+2-4a+30=2a+27\)

\(\Leftrightarrow4a^2+6a+36-2a-27=0\)

\(\Leftrightarrow4a^2+4a+9=0\)

hay \(a\in\varnothing\)