K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019

 

a) Vì A, B thuộc (P) nên:

x A = − 1 ⇒ y A = 1 2 ⋅ - 1 2 = 1 2 x B = 2 ⇒ y B = 1 2 ⋅ 2 2 = 2 ⇒ A − 1 ; 1 2  ,  B ( 2 ; 2 )

b) Gọi phương trình đường thẳng (d) là y = ax + b.

Ta có hệ phương trình:

− a + b = 1 2 2 a + b = 2 ⇔ 3 a = 3 2 2 a + b = 2 ⇔ a = 1 2 b = 1

Vậy (d):  y = 1 2 x + 1 .

c) (d) cắt trục Oy tại điểm C(0; 1) và cắt trục Ox tại điểm D(– 2; 0)

=>  OC = 1 và OD = 2

Gọi h là khoảng cách từ O tới (d).

Áp dụng hệ thức về cạnh và đường cao vào  vuông OCD, ta có:

1 h 2 = 1 O C 2 + 1 O D 2 = 1 1 2 + 1 2 2 = 5 4 ⇒ h = 2 5 5

Vậy khoảng cách từ gốc O tới (d) là  2 5 5 .

 

a: loading...

b: PTHĐGĐ là:

-x^2+4x-3=0

=>x^2-4x+3=0

=>x=1;x=3

=>A(1;-1); B(3;-9)

c: \(AB=\sqrt{\left(3-1\right)^2+\left(-9+1\right)^2}=2\sqrt{17}\)

 

Thay x=4 vào (P), ta được:

y=1/2*4^2=8

PTHHĐGĐ là:

x^2-2x-m^2+2m=0

Δ=(-2)^2-4(-m^2+2m)

=4+4m^2+8m=(2m+2)^2

Để phương trình có hai nghiệm phân biệt thì 2m+2<>0

=>m<>-1

x1^2+2x2=3m

=>x1^2+x2(x1+x2)=3m

=>x1^2+x2^2+x1x2=3m

=>(x1+x2)^2-x1x2=3m

=>2^2-(-m^2+2m)=3m

=>4+m^2-2m-3m=0

=>m^2-5m+4=0

=>m=1 hoặc m=4

10 tháng 5 2023

sao 2x2 lại bằng x2(x1+x2) vậy ạ

Thay x=1 vào (P), ta được:

\(y=1^2=1\)

Thay x=2 vào (P), ta được:

\(y=2^2=4\)

vậy: A(1;1); B(2;4)

Gọi H là tọa độ của hình chiếu vuông góc kẻ từ O xuống AB

O(0;0); H(x;y); A(1;1); B(2;4)

\(\overrightarrow{OH}=\left(x;y\right);\overrightarrow{AB}=\left(1;3\right)\)

Vì OH vuông góc với AB nên \(x\cdot1+y\cdot3=0\)

=>x+3y=0

Ta có: \(\overrightarrow{AH}=\left(x-1;y-1\right);\overrightarrow{AB}=\left(1;3\right)\)

mà A,H,B thẳng hàng

nên \(\dfrac{x-1}{1}=\dfrac{y-1}{3}\)

=>3x-3=y-1

=>3x-y=2(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}3x-y=2\\x+3y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}9x-3y=6\\x+3y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}10x=6\\x+3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{5}\\3y=-x=-\dfrac{3}{5}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{3}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)

Vậy: \(H\left(\dfrac{3}{5};-\dfrac{1}{5}\right)\)

b: Phương trình hoành độ giao điểm là:

\(\dfrac{3}{2}x^2-mx-2=0\)

\(\Leftrightarrow3x^2-2mx-4=0\)

a=3; b=-2m; c=-4

Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=40\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-4}{3}=40\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=36\)

=>m=9 hoặc m=-9

25 tháng 3 2022

1) y= 2x-4

HD: y=ax+b

.... song song: a=2 và b≠-1

..... A(1;-2)  => x=1 và y=-2 và Δ....

a+b=-2

Hay 2+b=-2 (thay a=2) 

<=> b=-4

KL:................

2) Xét PT hoành độ giao điểm của (P) và (d)

x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)

*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.

*) Theo hệ thức Viet ta có: 

S=x1+x2=2(m-1) và P=x1.x2=m-3

*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

Thay S và P vào M ta có:

\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)

 

Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)\(\dfrac{15}{4}\)

Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0