\(y=x^2\) và đường thẳng (d):
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

Bài này giải như số ý, kết luận khác chút.

Phương trình hoành độ giao điểm của (P) và (d) là:

     \(x^2=\left(k-1\right)x+4\)

\(\Leftrightarrow x^2-\left(k-1\right)x-4=0\)

( a = 1; b = - (k-1); c = -4 )

\(\Delta=b^2-4ac\)     

    \(=\left[-\left(k-1\right)\right]^2-4.1.\left(-4\right)\)

    \(=\left(k-1\right)^2+16>0\forall k\)

Vậy: (P) và (d) luôn cắt nhau tại 2 điểm phân biệt

Theo Vi-et ta có: \(\hept{\begin{cases}S=y_1+y_2=-\frac{b}{a}=k-1\\P=y_1y_2=\frac{c}{a}=-4\end{cases}}\)

Ta có: \(y_1+y_2=y_1y_2\)

     \(\Leftrightarrow S=P\)

     \(\Leftrightarrow k-1=-4\)

      \(\Leftrightarrow k=-3\left(TMĐK\right)\)

Vậy: k = -3 là giá trị cần tìm

     

15 tháng 4 2017

Mơn b, Vũ Như Mai

24 tháng 5 2021

a, Thay m = -1/2 vào (d) ta được : 

\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)

Hoành độ giao điểm thỏa mãn phương trình 

\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)

\(\Delta=4-4\left(-3\right)=4+12=16>0\)

\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)

Vói x = -1 thì \(y=-2+3=1\)

Vớ x = 3 thì \(y=6+3=9\)

Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )

b, mình chưa học 

24 tháng 5 2021

\(y_1+y_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)

Xét phương trình hoành độ giao điểm của (d) và (P) ta có: 

\(x^2=2x-2m+2\)

\(\Leftrightarrow x^2-2x+2m-2=0\)

Theo hệ thức Vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)

Từ (1)  \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow4-4m+4=8\)

\(\Leftrightarrow m=0\)

vậy..

7 tháng 2 2022

xin lỗi mình chưa đọc chỗ parabol ,sửa dòng 8 dưới lên nhé 

\(x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)

\(\Leftrightarrow\frac{1}{2}x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

\(\Leftrightarrow\frac{1}{2}\left(2m-2\right)\left[16-2\left(2m-2\right)\right]+48=0\)

\(\Leftrightarrow\left(m-1\right)\left(20-4m\right)+48=0\Leftrightarrow-4m^2+20m-20+4m+48=0\)

\(\Leftrightarrow-4m^2+24m+28=0\Leftrightarrow m^2-6m-7=0\)

Ta có : a - b + c = 1 + 6 - 7 = 0 

vậy pt có nghiệm x = -1 ; x = 7 

7 tháng 2 2022

a) vì A(-1; 3) thuộc (d) nên:

3 = 2.(-1) - a + 1

<=> 3 = -2 - a + 1

<=> a = 4

b) Lập phương trình hoành độ giao điểm: 

\(2x-a+1=\frac{1}{2}x^2\)

\(\Leftrightarrow\frac{1}{2}x^2-2x+a-1=0\)

ta có: \(y_1=\frac{1}{2}x_1^2\)

         \(y_2=\frac{1}{2}x_2^2\)

\(\Leftrightarrow x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)

\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1^2+x_2^2\right)\right]+48=0\)

\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

Theo định lý viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=\frac{a-1}{2}\end{cases}}\)

\(\Leftrightarrow\left(\frac{a-1}{2}\right)\left[\frac{1}{2}\cdot4^2-2\left(\frac{a-1}{2}\right)\right]+48=0\)

\(\Leftrightarrow10a-a^2+87=0\)

\(\Leftrightarrow\orbr{\begin{cases}x_1=5-4\sqrt{7}\\x_2=5+4\sqrt{7}\end{cases}}\)

22 tháng 5 2017
  1. a) Thay x=-1;y=3 vào (d) ta có: 3=(m+2)-1-m+6   <=>-m-2-m+6=3  <=>-2m=-1  <=>m=1/2.
22 tháng 2 2019

Hoành độ giao điểm của đường thẳng (d) và parabol (P) là nghiệm của PT: \(\dfrac{x^2}{2}=mx-m+2\)\(\Leftrightarrow\dfrac{x^2}{2}-mx+m-2=0\)\(\Leftrightarrow x^2-2mx+2m-4=0\left(1\right)\)

a, Thay x = 4 vào (1) ta có: \(4^2-2m\left(4-1\right)-4=0\Leftrightarrow6m=12\Leftrightarrow m=2\)

b, Ta có: \(x^2-2mx+2m-4=0\left(1\right)\)

\(\Delta=m^2-2m+4=\left(m-1\right)^2+3>0\forall m\)\(\Rightarrow\Delta>0\forall m\Rightarrow\)PT(1) có nghiệm \(\forall m\) \(\Rightarrow\)đpcm

c, Đường thẳng (d) cắt parabol (P) tại 2 điểm phân biệt \(\forall m\)\(\Rightarrow PT\left(1\right)\)luôn có 2 nghiệm phân biệt \(\forall m\)

Áp dụng hệ thức Vi-ét ta có: \(x_1+x_2=2m\left(2\right)\)

\(y_1+y_2=\left(mx_1-m+2\right)+\left(mx_2-m+2\right)\)\(=mx_1-m+2+mx_2-m+2=m\left(x_1+x_2\right)-2m+4\left(3\right)\)

Thay (2) vào (3) ta có: \(y_1+y_2=2m^2-2m+4=\left(m\sqrt{2}\right)^2-4m\sqrt{2}+4+4m\sqrt{2}-2m\)\(=\left(m\sqrt{2}-2\right)^2+2m\left(2\sqrt{2}-1\right)\left(4\right)\)

Thay (2) vào (4) ta có:

\(y_1+y_2=\left(m\sqrt{2}-2\right)^2+\left(x_1+x_2\right)\left(2\sqrt{2}-1\right)\)

\(\Rightarrow y_1+y_2\ge\left(2\sqrt{2}-1\right)\left(x_1+x_2\right)\)

23 tháng 2 2019

cảm ơn bạn nhiều lắm ạ

9 tháng 6 2019

a) Phương trình hoành độ giao điểm của (d) và (P) là

           \(x^2=\left(m-1\right)x+4\Leftrightarrow x^2-\left(m-1\right)x-4=0\)

Ta có \(\Delta=\left(m-1\right)^2-4.\left(-4\right)=\left(m-1\right)^2+16\)

Vì \(\left(m-1\right)^2\ge0\forall m\Rightarrow\left(m-1\right)^2+16>0\forall m\)hay \(\Delta>0\)

Suy ra phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi giá trị của m

Do đó đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt với mọi m

(hoặc lập luận cho ac=1.(-4)<0 nên có 2 nghiệm phân biệt ...)

b) Theo chứng minh ý a thì phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt , áp dụng hệ thức Vi-ét:

\(\hept{\begin{cases}x_1+x_2=m-1\\x_1x_2=-4\end{cases}}\)

Khi đó : \(y_1+y_2=y_1.y_2\Leftrightarrow x_1^2+x_2^2=x_1^2.x_2^2\)( có cái này là do parabol P y=x^2)

     \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\left(x_1x_2\right)^2\Leftrightarrow\left(m-1\right)^2-2.\left(-4\right)=\left(-4\right)^2\)

\(\Leftrightarrow\left(m-1\right)^2=8\Leftrightarrow\orbr{\begin{cases}m-1=2\sqrt{2}\\m-1=-2\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}+1\\m=1-2\sqrt{2}\end{cases}}\)

Vậy...........................

9 tháng 6 2019

a/

hoành độ giao điểm của (d) và ( p ) là nghiệm của phương trình

\(x^2-\left(m-1\right)x-4=0\)

den ta = \(\left(m-1\right)^2+16>0\forall m\)

=> phương trình luôn có 2 nghiệm phân biệt với mọi m

b/

vì \(y_1,y_2\) là tung độ giao điểm của (d ) và ( p ) 

=> \(y_1=x_1^2\)

    \(y_2=x_2^2\)

theo vi - ét có \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-4\end{cases}}\)

ta có \(y_1+y_2=y_1.y_2\)

<=> \(x_1^2+x_2^2=x_1^2x_2^2\)

<=> \(\left(x_2+x_{ }_1\right)^2-2x_1x_2-x_1^2.x_2^2=0\)

<=> \(\left(m-1\right)^2-2.\left(-4\right)-\left(-4\right)^2=0\)

<=> \(m^2-2m+1+8-16=0\)

<=> \(m^2-2m-7=0\)

<=>\(\left(m-1\right)^2-8=0\)

<=> \(\left(m-1\right)^2=8\)

<=> \(m-1=2\sqrt{2}\left(h\right)m-1=-2\sqrt{2}\)

<=> \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)

vậy \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)

CHÚC BẠN HỌC TỐT

27 tháng 6 2019

Gọi ptđt (d) có dạng: y= kx+b

Vì M(1;12)\(\in\) (d)

Thay xM= 1; yM= 12 vào (d)

\(k+b=12\Rightarrow b=12-k\)

Xét PTHĐGĐ của (d) và (P)

\(\frac{x^2}{3}=kx+b\Leftrightarrow x^2-3kx-3b=0\)

\(\Delta=9k^2+12b=9k^2-12k+144>0\forall x\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=3k\\x_1x_2=-3b=-3\left(12-k\right)=3k-36\end{matrix}\right.\)

\(\frac{y_2}{x_1}+\frac{y_1}{x_2}=\frac{\left(kx_2+b\right)x_2+\left(kx_1+b\right)x_1}{x_1x_2}=\frac{k\left(x_1+x_2\right)^2-2kx_1x_2+b\left(x_1+x_2\right)}{x_1x_2}\)

Đến đây gần xong rùi, bạn thay hệ thức Vi-ét vào rùi giải là OK

a: k=-2 nên (d): y=-3x+4

PTHĐGĐ là:

\(x^2+3x-4=0\)

=>(x+4)(x-1)=0

=>x=-4 hoặc x=1

Khi x=-4 thì y=16

Khi x=1 thì y=1

b: Phương trình hoành độ giao điểm là:

\(x^2-\left(k-1\right)x-4=0\)

a=1; b=-k+1; c=-4

Vì ac<0nên (P) luôn cắt (d) tại hai điểm phân biệt

NV
7 tháng 7 2020

Phương trình hoành độ giao điểm: \(x^2-\left(2m-1\right)x+m-2=0\)

\(\Delta=\left(2m-1\right)^2-4\left(m-2\right)=\left(2m-2\right)^2+5>0;\forall m\)

\(\Rightarrow\) d luôn cắt (P) tại 2 điểm phân biệt

\(x_1y_1+x_2y_2=0\)

\(\Leftrightarrow x_1.x_1^2+x_2.x_2^2=0\) (do \(y_1=x_1^2;y_2=x_2^2\))

\(\Leftrightarrow x_1^3+x_2^3=0\)

\(\Leftrightarrow x_1^3=-x_2^3\Leftrightarrow x_1=-x_2\)

\(\Leftrightarrow x_1+x_2=0\)

\(x_1+x_2=2m-1\Rightarrow2m-1=0\Rightarrow m=\frac{1}{2}\)

7 tháng 7 2020

ra là thế, aa mơn chú Hàm số y = ax^2 (a khác 0)