Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đương nhiên là bạn tự vẽ
b/ Phương trình hoành độ giao điểm:
\(\frac{1}{2}x^2=\frac{1}{4}x+\frac{3}{2}\Leftrightarrow2x^2-x-6=0\Rightarrow\left[{}\begin{matrix}x_1=2\Rightarrow y_1=2\\x_2=-\frac{3}{2}\Rightarrow y_2=\frac{9}{8}\end{matrix}\right.\)
\(\Rightarrow T=\frac{2-\frac{3}{2}}{2+\frac{9}{8}}=\frac{4}{25}\)
b) Hoành độ giao điểm của parabol (P) và đường thẳng d là nghiệm của phương trình:
\(x^2=2\left(m+3\right)x-2m-5\Leftrightarrow x^2-2\left(m+3\right)x+2m+5=0\) (1)
\(\Delta'=\left(m+3\right)^2-\left(2m+5\right)=m^2+6m+9-2m-5=m^2+4m+4=\left(m+2\right)^2\)
Phương trình (1) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta'>0\)
mà \(\Delta'=\left(m+2\right)^2\ge0,\forall m\)
\(\Leftrightarrow\) \(\left(m+2\right)^2\ne0\Leftrightarrow m\ne-2\)
=> (P) cắt (d) tại 2 điểm phân biệt khi \(m\ne-2\)
Theo định lí Vi-ét: \(\left\{{}\begin{matrix}S=x_1+x_2=2\left(m+3\right)=2m+6\\P=x_1x_2=2m+5\end{matrix}\right.\)
\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=\frac{4}{3}\)
\(\Leftrightarrow\frac{\sqrt{x_2}+\sqrt{x_1}}{\sqrt{x_1x_2}}=\frac{4}{3}\)
\(\Rightarrow\left(\frac{\sqrt{x_2}+\sqrt{x_1}}{\sqrt{x_1x_2}}\right)^2=\frac{16}{9}\)
\(\Leftrightarrow\frac{x_2+2\sqrt{x_1x_2}+x_1}{x_1x_2}=\frac{16}{9}\)
\(\Leftrightarrow\frac{2m+6+2\sqrt{2m+5}}{2m+5}=\frac{16}{9}\)
\(\Leftrightarrow32m+80=18m+54+18\sqrt{2m+5}\)
\(\Leftrightarrow18\sqrt{2m+5}=14m+26\)
\(\Leftrightarrow\sqrt{2m+5}=\frac{7}{9}m+\frac{13}{9}\) (2)
ĐK: \(\left\{{}\begin{matrix}\frac{7}{9}m+\frac{13}{9}\ge0\\m\ne-2\end{matrix}\right.\Leftrightarrow m\ge-\frac{13}{7}\)
Bình phương 2 vế của phương trình (2):
\(2m+5=\frac{49}{81}m^2+\frac{182}{81}m+\frac{169}{81}\)
\(\Leftrightarrow\frac{49}{81}m^2+\frac{20}{81}m-\frac{236}{81}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=2\left(TM\right)\\m=-\frac{118}{49}\left(l\right)\end{matrix}\right.\)
Vậy m = 2 thỏa mãn đề bài
May mà nghiệm đẹp, phương trình xấu quá nên còn tưởng làm sai ;w;
PTHĐGĐ là:
1/2x^2=2x-a+1
=>x^2=4x-2a+2
=>x^2-4x+2a-2=0
Δ=(-4)^2-4(2a-2)
=16-8a+8=-8a+24
Để (d) cắt (P) tại hai điểm phân biệt thì -8a+24>0
=>-8a>-24
=>a<3
x1x2(y1+y2)+48=0
=>(2a-2)*[(x1)^2+(x2)^2]+48=0
\(\Leftrightarrow\left(2a-2\right)\cdot\left[4^2-2\left(2a-2\right)\right]+48=0\)
=>\(\left(2a-2\right)\left(16-4a+4\right)+48=0\)
=>\(\left(2a-2\right)\left(-4a+20\right)+48=0\)
=>\(2\left(a-2\right)\cdot\left(-4\right)\cdot\left(a-5\right)+48=0\)
=>(a-2)(a-5)=-48/-8=6
=>a^2-7a+10-6=0
=>a^2-7a+4=0
=>\(a=\dfrac{7\pm\sqrt{33}}{2}\)
a) Phương trình hoành độ giao điểm của (P) và (d) là:
\(\dfrac{x^2}{2}=mx-m+2\)
\(\Leftrightarrow\dfrac{1}{2}x^2-mx+m-2=0\)
\(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-2\right)=m^2-2m+4>0\forall m\)
Do đó: (P) và (d) luôn cắt nhau tại hai điểm phân biệt(Đpcm)