K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 6 2020

A là giao điểm AB và AD nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x+3y-4=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow A\left(1;1\right)\)

\(M\left(2;2\right)\) là trung điểm AB \(\Rightarrow B\left(3;3\right)\)

\(BC//AD\Rightarrow\frac{a}{1}=\frac{-2}{-2}\Rightarrow a=1\)

Pt BC: \(x-2y+c=0\)

DO BC qua B nên: \(3-2.3+c=0\Rightarrow c=3\)

\(\Rightarrow a^2+c^2=10\)

NV
24 tháng 2 2020

Phương trình đường thẳng qua O và song song AB có dạng: \(x-y=0\)

\(\Rightarrow\) Tọa độ M là nghiệm của hệ: \(\left\{{}\begin{matrix}x+3y-6=0\\x-y=0\end{matrix}\right.\) \(\Rightarrow M\left(\frac{3}{2};\frac{3}{2}\right)\)

Phương trình đường thẳng BC qua M, nhận \(\left(1;1\right)\) là 1 vtpt có dạng:

\(1\left(x-\frac{3}{2}\right)+1\left(y-\frac{3}{2}\right)=0\Leftrightarrow x+y-3=0\)

Tọa độ B là nghiệm của hệ: \(\left\{{}\begin{matrix}x-y+5=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow B\)

M là trung điểm BC \(\Rightarrow\) tọa độ C

O là trung điểm AC \(\Rightarrow\) tọa độ A

O là trung điểm BD \(\Rightarrow\) tọa độ D

20 tháng 3 2021

Phương trình đường thẳng qua O và song song AB có dạng: xy=0x−y=0

 Tọa độ M là nghiệm của hệ: {x+3y6=0xy=0{x+3y−6=0x−y=0 M(32;32)⇒M(32;32)

Phương trình đường thẳng BC qua M, nhận (1;1)(1;1) là 1 vtpt có dạng:

1(x32)+1(y32)=0x+y3=01(x−32)+1(y−32)=0⇔x+y−3=0

Tọa độ B là nghiệm của hệ: {xy+5=0x+y3=0{x−y+5=0x+y−3=0 B⇒B

M là trung điểm BC  tọa độ C

O là trung điểm AC  tọa độ A

O là trung điểm BD 

20 tháng 12 2021

1, Gọi tọa độ điểm D(x;y)

Ta có:\(\overrightarrow{AB}\left(8;1\right)\)

\(\overrightarrow{DC}\left(1-x;5-y\right)\)

Tứ giác ABCD là hình bình hành khi

\(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow1-x=8;5-y=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)

Vậy tọa độ điểm D(-7;4)

20 tháng 12 2021

câu 2 tương tự như câu 1 nha bạn

a: A(2;4); B(1;0); C(2;2)

vecto AB=(-1;-4)

vecto DC=(2-x;2-y)

Vì ABCD là hình bình hành nên vecto AB=vecto DC

=>2-x=-1 và 2-y=-4

=>x=3 và y=6

c: N đối xứng B qua C

=>x+1=4 và y+0=4

=>x=3 và y=4

23 tháng 11 2024

a: A(2;4); B(1;0); C(2;2)

vecto AB=(-1;-4)

vecto DC=(2-x;2-y)

Vì ABCD là hình bình hành nên vecto AB=vecto DC

đây nhé bạn

=>2-x=-1 và 2-y=-4

=>x=3 và y=6

c: N đối xứng B qua C

=>x+1=4 và y+0=4

=>x=3 và y=4

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

5 tháng 5 2023

Để tìm tọa độ đỉnh B và điểm M, ta có thể sử dụng các thông tin sau:

M là trung điểm của BC, nghĩa là tọa độ của M bằng trung bình cộng của tọa độ của B và C.N là trung điểm của CD, nghĩa là tọa độ của C là (2, -2).Do ABCD là hình vuông nên độ dài các cạnh bằng nhau, suy ra AB = CD = BC = AD.Vì M có hoành độ nguyên, nên tọa độ của B và C cũng phải có hoành độ nguyên.

Từ đó, ta có thể tìm tọa độ của B như sau:

Đặt tọa độ của B là (x, y).Do AB = BC, suy ra x - 1 = 1 - y, hay x + y = 2.Do AB = CD = 2, suy ra tọa độ của A là (x - 1, y + 1) và tọa độ của D là (x + 1, y - 1).Vì đường thẳng AM có phương trình x+2y-2=0, nên điểm A nằm trên đường thẳng đó, tức là x - 2y + 2 = 0.Từ hai phương trình trên, ta giải hệ: x + y = 2 x - 2y + 2 = 0Giải hệ này ta được x = 2 và y = 0, suy ra tọa độ của B là (2, 0).

Tiếp theo, ta sẽ tìm tọa độ của M:

Đặt tọa độ của M là (p, q).Do M là trung điểm của BC, suy ra p = (x + r)/2 và q = (y + s)/2, với r, s lần lượt là hoành độ và tung độ của C.Ta đã biết tọa độ của C là (2, -2), suy ra r = 2 và s = -4.Từ AM có phương trình x+2y-2=0, suy ra p + 2q - 2 = 0.Với hoành độ nguyên của M, ta có thể thử các giá trị p = 1, 2, 3, ... và tính q tương ứng.Khi p = 2, ta có p + 2q - 2 = 2q = 2, suy ra q = 1.Vậy tọa độ của M là (2, 1).<đủ chi tiết luôn nhó>