Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hai đường thẳng đã cho song song với nhau, điều kiện cần là m2 + 2 = 6 ⇔ m2 = 4 ⇔ m = 2 hoặc m = –2
Với m = 2, hai đường thẳng đã cho trở thành y = 6x + 2 và y = 6x + 2 (loại vì chúng trùng nhau)
Với m = –2, hai đường thẳng đã cho trở thành y = 6x – 2 và y = 6x + 2 (thỏa mãn)
Vậy m = –2 là giá trị cần tìm
Để \(y=\left(m^2+2\right)x+m\) song song với y=6x+2 thì
\(\left\{{}\begin{matrix}m^2+2=6\\m< >2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m^2=4\\m\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\ne2\end{matrix}\right.\)
=>m=-2
a) y = 2x - 3
Cho x = 0 \(\Rightarrow\) y = -3 \(\Rightarrow\) A(0; -3)
Cho y = 0 \(\Rightarrow\) \(x=\dfrac{3}{2}\) \(\Rightarrow\) B\(\left(\dfrac{3}{2};0\right)\)
b) ĐKXĐ của (d'): \(m^2-2\ne0\)
\(\Leftrightarrow m\ne\sqrt{2}\) và \(m\ne-\sqrt{2}\)
Để (d) // (d') thì
\(\left\{{}\begin{matrix}m^2-2=2\\m-1\ne-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\)
\(\Leftrightarrow m=2\) (nhận)
Vậy m = 2 thì (d) // (d')
1) y= 2x-4
HD: y=ax+b
.... song song: a=2 và b≠-1
..... A(1;-2) => x=1 và y=-2 và Δ....
a+b=-2
Hay 2+b=-2 (thay a=2)
<=> b=-4
KL:................
2) Xét PT hoành độ giao điểm của (P) và (d)
x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)
*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.
*) Theo hệ thức Viet ta có:
S=x1+x2=2(m-1) và P=x1.x2=m-3
*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
Thay S và P vào M ta có:
\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)
Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)≥\(\dfrac{15}{4}\)
Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0
Để đường thẳng \(y=\left(m-2\right)x+k\) song song với đường thẳng \(y=5x-1.\)
\(\Rightarrow\left\{{}\begin{matrix}m-2=5.\\k\ne-1.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=7.\\k\ne-1.\end{matrix}\right.\)
Đường thẳng \(y=\left(m-2\right)x+k\) đi qua điểm \(P\left(2;1\right).\)
\(\Rightarrow1=\left(7-2\right).2+k.\\ \Leftrightarrow1=10+k.\\ \Leftrightarrow k=-9\left(TM\right).\)
Vậy \(m=7;k=-9.\)
Vì (d)//y=x+2 nên a-2=1
hay a=3
Vậy: (d): y=x+b
Thay x=-2 và y=-1 vào (d), ta được:
b-2=-1
hay b=1
Để hai đường thẳng song song mà không trùng nhau thì điều kiện cần và đủ là :
\(\hept{\begin{cases}m=1\\3m+2\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\m\ne-\frac{1}{3}\end{cases}\Leftrightarrow}m=1}\)
Lời giải:
a) Để hai đường thẳng trên song song với nhau (không tính trùng) thì:
\(\left\{\begin{matrix} m^2+2=6\\ m\neq 2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m^2=4\\ m\neq 2\end{matrix}\right.\)
\(\Leftrightarrow m=-2\)
b) Hai đths cắt nhau tại một giao điểm $A$ trên trục tung tức là giao điểm đó có hoành độ bằng $0$. Hay \(x_A=0\)
\(A\in (y=(m^2+2)x+m)\Rightarrow y_A=(m^2+2)x_A+m=m\)
\(A\in (y=6x+2)\Rightarrow y_A=6x_A+2=2\)
\(\Rightarrow y_A=m=2\)
Vậy \(m=2\) . Mà với $m=2$ thì hai đt trùng nhau (không cắt nhau ) nên vô lý. Do đó không tồn tại $m$ thỏa mãn.
a: (d)'//(d) nên (d'): y=-3x+b
Thay x=1 và y=2 vào (d'), ta được:
b-3=2
=>b=5
=>y=-3x+5
b: PTHĐGĐ là;
mx^2+3x-1=0
Để (d) cắt (P) tại hai điểm phân biệt nằm về cùng một phía so với trục tung thì
(-3)^2-4*m*(-1)>0 và -1/m>0
=>m<0 và 9+4m>0
=>m<0 và m>-9/4
=>-9/4<m<0
Bạn tham khảo .
Xét 2 đường thẳng: \(y=\left(m^2+2\right)x+m\left(d\right)\)
\(y=6x+2\left(d'\right)\)
Để \(\left(d\right)//\left(d'\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2+2=6\\m\ne2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne2\end{matrix}\right.\)
\(\Leftrightarrow m=-2\)
Vậy.......