Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) y= 2x-4
HD: y=ax+b
.... song song: a=2 và b≠-1
..... A(1;-2) => x=1 và y=-2 và Δ....
a+b=-2
Hay 2+b=-2 (thay a=2)
<=> b=-4
KL:................
2) Xét PT hoành độ giao điểm của (P) và (d)
x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)
*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.
*) Theo hệ thức Viet ta có:
S=x1+x2=2(m-1) và P=x1.x2=m-3
*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
Thay S và P vào M ta có:
\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)
Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)≥\(\dfrac{15}{4}\)
Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0
Đường thẳng đoạn chắn qua M (3,1) có pt và a+3b min
a+3b=12, b= a/3
a=6, b=2
Đường thẳng d cắt trục hoành tai điểm A(6,0), B(0,2)
??
Giả sử \(A\left(\frac{1}{a},0\right),B\left(0,\frac{1}{b}\right)\). Phương trình đường thẳng d cần tìm có dạng: \(ax+by=1\)
Vì \(M\left(3,1\right)\in d\)nên \(3a+b=1\)
Ta có : \(OA+3OB=\left|\frac{1}{a}\right|+\left|\frac{3}{b}\right|\ge\left|\frac{1}{a}+\frac{3}{b}\right|=\left|\frac{3a+b}{a}+\frac{3\left(3a+b\right)}{b}\right|=\left|6+\frac{b}{a}+\frac{9a}{b}\right|\)
Áp dụng bất đẳng thức AM-GM ta có : \(\frac{b}{a}+\frac{9a}{b}\ge2\sqrt{\frac{9ab}{ab}}=6\)
\(\Rightarrow OA+3OB\ge\left|6+6\right|=12\)
Dấu "=" xảy ra khi: \(a=\frac{1}{6},b=\frac{1}{2}\)
a) Vì A, B thuộc (P) nên:
x A = − 1 ⇒ y A = 1 2 ⋅ - 1 2 = 1 2 x B = 2 ⇒ y B = 1 2 ⋅ 2 2 = 2 ⇒ A − 1 ; 1 2 , B ( 2 ; 2 )
b) Gọi phương trình đường thẳng (d) là y = ax + b.
Ta có hệ phương trình:
− a + b = 1 2 2 a + b = 2 ⇔ 3 a = 3 2 2 a + b = 2 ⇔ a = 1 2 b = 1
Vậy (d): y = 1 2 x + 1 .
c) (d) cắt trục Oy tại điểm C(0; 1) và cắt trục Ox tại điểm D(– 2; 0)
=> OC = 1 và OD = 2
Gọi h là khoảng cách từ O tới (d).
Áp dụng hệ thức về cạnh và đường cao vào ∆ vuông OCD, ta có:
1 h 2 = 1 O C 2 + 1 O D 2 = 1 1 2 + 1 2 2 = 5 4 ⇒ h = 2 5 5
Vậy khoảng cách từ gốc O tới (d) là 2 5 5 .
a) Gọi đường (d) có dạng: y=ax+b
Vì (d) đi qua M(1;4) nên 4=a.1+b
=> a+b=4
\(B=\left(d\right)giaoOy\Rightarrow\hept{\begin{cases}x_B=0\\y_B=b\end{cases}}\)
\(A=\left(d\right)giaoOx\Rightarrow\hept{\begin{cases}x_A=\frac{-b}{a}\\y_A=0\end{cases}}\)
Vì \(x_A,y_A,x_B,y_B\)đều là số nguyên => b;a thuộc Z
Ta có: \(x_A=\frac{-b}{a}=\frac{-b}{4-b}=\frac{\left(4-b\right)-4}{\left(4-b\right)}\)
\(x_A=1-\frac{4}{4-b}\)
b thuộc Z để \(x_A\inℤ\)\(\Leftrightarrow\frac{4}{4-b}\inℤ\Rightarrow4-b\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)\in\left\{\pm1;\pm2;\pm4\right\}\)
có bảng sau:
4-b=a | 1 | -1 | 2 | -2 | 4 | -4 |
b | 3 | 5 | 2 | 6 | 0 | 8 |
=> \(\left(a;b\right)=\left(1;3\right),\left(-1;5\right),\left(2;2\right),\left(-2;6\right),\left(4;0\right),\left(-4;8\right)\)
Vậy \(A=\left(-3;0\right),B=\left(0;3\right)\)
hoặc \(A=\left(5;0\right),B=\left(0;5\right)\)
hoặc \(A=\left(-1;0\right),B=\left(0;2\right)\)
hoặc \(A=\left(3;0\right),B=\left(0;6\right)\)
hoặc \(A=\left(0;0\right),B=\left(0;0\right)\)(LOẠI)
hoặc \(A=\left(2;0\right),\left(B=0;8\right)\)