K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
9 tháng 8 2021
Ta thấy tâm vị tự \(I\left(1;-1\right)\) cũng là tâm của đường tròn \(\left(C\right)\). Do đó \(\left(C'\right),\left(C\right)\) đồng tâm
Suy ra tỉ số vị tự \(k=\frac{R'}{R}=\frac{IM}{R}=\frac{5}{4}\) thì \(\left(C'\right)\) đi qua M.
24 tháng 5 2017
Dễ thấy bán kính của (C') bằng 4. Tâm I' của (C') là ảnh của tâm I(1;2) của (C) qua phép đồng dạng nói trên. Qua phép vị tự tâm O, tỉ số \(k=-2,I\) biến thành \(I_1\left(-2;-4\right)\). Qua phép đối xứng qua trục \(Ox\), \(I_1\) biến thành \(I'\left(-2;4\right)\).
Từ đó suy ra phương trình của (C') là \(\left(x+2\right)^2+\left(y-4\right)^2=16\)
Đường tròn tâm \(A\left(1;-1\right)\) bán kính \(R=4\)
Do tâm vị tự trùng tâm đường tròn (tọa độ giống nhau)
\(\Rightarrow\) (C') là đường tròn tâm \(A\left(1;-1\right)\) bán kính \(R'=\left|k\right|.R=4\left|k\right|\)
Phương trình (C'):
\(\left(x-1\right)^2+\left(y+1\right)^2=16k^2\)
Do (C') qua M nên:
\(\left(4-1\right)^2+\left(3+1\right)^2=16k^2\)
\(\Rightarrow k^2=\frac{25}{16}\Rightarrow k=\pm\frac{5}{4}\)