K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 10 2019

Do \(\left|MA-MB\right|\ge0\Rightarrow\left|MA-MB\right|_{min}=0\) khi \(MA=MB\Leftrightarrow MA^2=MB^2\)

Gọi \(M\left(0;a\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(3;a-1\right)\\\overrightarrow{BM}=\left(5;a-5\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}MA^2=3^2+\left(a-1\right)^2=a^2-2a+10\\MB^2=25+\left(a-5\right)^2=a^2-10a+50\end{matrix}\right.\)

\(MA^2=MB^2\Rightarrow a^2-2a+10=a^2-10a+50\)

\(\Rightarrow8a=40\Rightarrow a=5\Rightarrow M\left(0;5\right)\)

Vì C thuộc trục tung nên C(0;y)

\(\overrightarrow{AB}=\left(-4;-1\right)\)

\(\overrightarrow{AC}=\left(-1;y-2\right)\)

Theo đề, ta có: 4-(y-2)=0

=>y-2=4

hay y=6

12 tháng 5 2022

Vì C thuộc trục tung nên C(0;y)

AB=(−4;−1)AB→=(−4;−1)

AC=(−1;y−2)AC→=(−1;y−2)

Theo đề, ta có: 4-(y-2)=0

=>y-2=4hay y=6

26 tháng 1 2021

Gọi G là trọng tâm tam giác ABC

\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1}{3};y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{1}{3}\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) nhỏ nhất khi \(3MG\) nhỏ nhất

\(\Leftrightarrow M\) là hình chiếu của \(G\) trên trục tung

\(\Leftrightarrow M\left(0;\dfrac{1}{3}\right)\)

\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\le3MG=1\)

Đẳng thức xảy ra khi \(M\left(0;\dfrac{1}{3}\right)\)

\(\Rightarrow\) Tung độ \(y_M=\dfrac{1}{3}\)

8 tháng 4 2017

Ta có M ∈ O x  nên M(x;O) và  M A → = − 4 − x ; 0 M B → = − 5 − x ; 0 M C → = 3 − x ; 0 ⇒ M A → + M B → + M C → = − 6 − 3 x ; 0 .

Do M A → + M B → + M C → = 0 →  nên − 6 − 3 x = 0 ⇔ x = − 2 ⇒ M − 2 ; 0 .  

Chọn A.

NV
25 tháng 6 2020

Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+1\right)\\\overrightarrow{BM}=\left(-3;m-2\right)\end{matrix}\right.\)

\(T=AM^2+BM^2=1+\left(m+1\right)^2+9+\left(m-2\right)^2\)

\(=10+m^2+2m+1+m^2-4m+4\)

\(=2m^2-2m+15=2\left(m-\frac{1}{2}\right)^2+\frac{29}{2}\ge\frac{29}{2}\)

Dấu "=" xảy ra khi \(m=\frac{1}{2}\) hay \(M\left(0;\frac{1}{2}\right)\)

6 tháng 4 2016

Giả sử tọa độ M(x;0). Khi đó \(\overrightarrow{MA}=\left(1-x;2\right);\overrightarrow{MB}=\left(4-x;3\right)\)

Theo giả thiết ta có \(\overrightarrow{MA}.\overrightarrow{MB}=MA.MB.\cos45^0\)

\(\Leftrightarrow\left(1-x\right)\left(4-x\right)+6=\sqrt{\left(1-x\right)^2+4}.\sqrt{\left(4-x\right)^2+9}.\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow x^2-5x+10=\sqrt{x^2-2x+5}.\sqrt{x^2-8x+25}.\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow2\left(x^2-5x+10\right)^2=\left(x^2-5x+10\right)\left(x^2-8x+25\right)\) (do \(x^2-5x+10>0\))

\(\Leftrightarrow x^4-10x^3+44x^2-110x+75=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x^2-4x+15\right)=0\)

\(\Leftrightarrow x=1;x=5\)

Vậy ta có 2 điểm cần tìm là M(1;0) hoặc M(5;0)

10 tháng 12 2020

M thuộc trục tung nên tung độ y bằng 0

\(\Rightarrow M\left(a;0\right)\)

Ta có P= \(MA^2+MB^2=\sqrt{\left(1-a\right)^2+\left(-1\right)^2}^2+\sqrt{\left(3-a\right)^2+2^2}^2=2a^2-8a+15=2\left(a-2\right)^2+7\ge7\)

\(\Rightarrow\) MinP=7 đạt được khi a=2

khi đó M(2;0)

21 tháng 11 2022

M thuộc trục tung thì M có toạ độ M(0,a) chứ 

 

13 tháng 4 2017

Ta có M ∈ O y  nên M(0; m) và  M A → = 1 ; −   1 − m M B → = 3 ; 2 − m .

Khi đó  M A 2 + M B 2 = M A → 2 + M B → 2 = 1 2 + − 1 − m 2 + 3 2 + 2 − m 2 = 2 m 2 − 2 m + 15.

= 2 m − 1 2 2 + 29 2 ≥ 29 2 ;    ∀ m ∈ ℝ .

Suy ra M A 2 + M B 2 min = 29 2 .  

Dấu =  xảy ra khi và chỉ khi m = 1 2    ⇒    M 0 ; 1 2 .  

Chọn C.