Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=2 vào (P),ta được:
y=2^2/2=2
2: Thay x=2 và y=2 vào (d), ta được:
m-1+2=2
=>m-1=0
=>m=1
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>m=-4
b: PTHĐGĐ là;
1/2x^2-2x+m-1=0
=>x^2-4x+2m-2=0
Δ=(-4)^2-4(2m-2)
=16-8m+8=-8m+24
Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0
=>m<3
x1x2(y1+y2)+48=0
=>x1x2(x1^2+x2^2)+48=0
=>(2m-2)[4^2-2(2m-2)]+48=0
=>(2m-2)(16-4m+4)+48=0
=>(2m-2)*(20-4m)+48=0
=>40m-8m^2-40+8m+48=0
=>-8m^2+48m+8=0
=>m=3+căn 10 hoặc m=3-căn 10
a: Thay x=0 và y=-5 vào (d), ta được:
2(m+1)*0-m^2-4=-5
=>m^2+4=5
=>m=1 hoặc m=-1
b:
PTHĐGĐ là;
x^2-2(m+1)x+m^2+4=0
Δ=(2m+2)^2-4(m^2+4)
=4m^2+8m+4-4m^2-16=8m-12
Để PT có hai nghiệm phân biệt thì 8m-12>0
=>m>3/2
x1+x2=2m+2; x1x2=m^2+4
(2x1-1)(x2^2-2m*x2+m^2+3)=21
=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21
=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21
=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21
=>(2x1-1)(2x2-1)=21
=>4x1x2-2(x1+x2)+1=21
=>4(m^2+4)-2(2m+2)+1=21
=>4m^2+16-4m-4-20=0
=>4m^2-4m-8=0
=>(m-2)(m+1)=0
=>m=2(nhận) hoặc m=-1(loại)
1/
\(\hept{\begin{cases}3x+4y=6\left(1\right)\\2x-y=-7\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow8x-4y=-28\left(3\right)\)
Cộng 2 vế của (1) với (3) \(\Rightarrow11x=-22\Rightarrow x=-2\) Thay vào (2) \(\Rightarrow2.\left(-2\right)-y=-7\Rightarrow y=3\)
2/
a/ d cắt p tại 2 điểm phân biệt khi \(x^2=5x+m\Leftrightarrow x^2-5x-m=0\) có 2 nghiệm phân biệt
Điều kiện \(\Delta=25+4m>0\Leftrightarrow m>-\frac{25}{4}\)
b/ Khi m=-4
\(x^2-5x+4=0\Rightarrow x_1=1;x_2=4\)
Khi m=-4 d cắt p tại 2 điểm phân biệt A(1;0) và B(4;0)
a:
b: PTHĐGĐ là:
2x^2-(2m-2)x+m-1=0
Δ=(2m-2)^2-4*2*(m-1)
=4m^2-8m+4-8m+8
=4m^2-16m+12
=4m^2-2*2m*4+16-4=(2m-4)^2-4=(2m-6)(2m-2)
Để (d) cắt (P) tại 2 điểm pb thì (2m-6)(2m-2)>0
=>m>3 hoặc m<1
Bài 3:
Đặt \(a=m^2-4\)
\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến
\(\Leftrightarrow a< 0\)
\(\Leftrightarrow m^2-4< 0\)
\(\Leftrightarrow m^2< 4\)
\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)
\(\Leftrightarrow-2< m< 2\)
Vậy với \(-2< m< 2\)thì hàm số nghịch biến
\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)
\(\Leftrightarrow a>0\)
\(\Leftrightarrow m^2-4>0\)
\(\Leftrightarrow m^2>4\)
\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)
Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)
Giải thích các bước giải:
a,Thay m=3m=3 vào (d)(d) ta đc: y=2x−3y=2x-3
có đường thẳng (d)(d) đi qua điểm B(0;−3)B(0;-3) và điểm A(32;0)A(32;0)
Có tam giác tạo bởi (d)(d) và 2 trục tọa độ là ΔOABΔOAB
Có OA=∣∣∣32∣∣∣=32;OB=|−3|=3OA=|32|=32;OB=|-3|=3
→SOAB=12.OA.OB=12.3/2.3=94(đvdt)→SOAB=12.OA.OB=12.3/2.3=94(đvdt)
Vậy SOAB=94đvdtSOAB=94đvdt
b,Để (d)(d) cắt đt y=−x+1y=-x+1 ⇔m−1≠−1⇔m-1≠-1
⇔m≠0⇔m≠0
Để (d) cắt đt y=−x+1y=-x+1 tại điểm có hoành độ bằng −2-2
Thay x=−2x=-2 vào 2 công thức hàm số ta đc hpt:
{y=(m−1).(−2)−my=2+1=3{y=(m−1).(−2)−my=2+1=3
→{3=−2m+2−my=3{3=−2m+2−my=3
↔{−3m=1y=3{−3m=1y=3
↔{m=−13y=3{m=−13y=3
→m=−13→m=-13(thỏa mãn)
Vậy m=−13m=-13
thay x=1 và y=5 vào y=(2m+1)x+m
=> 5=(2m+1).1+m
<=> 5= 2m+1+m
<=> 5=3m+1
<=>3m= 4
<=>m=4/3
vạy m= 4/3