K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 12 2022

Đường thẳng (d) qua điểm cố định \(A\left(-1;1\right)\)

Đường thẳng OA có phương trình: \(y=-x\) nên có hệ số góc bằng -1

\(\Rightarrow\) K/c từ O đến (d) lớn nhất khi 2 đường thẳng (d) và OA vuông góc

\(\Rightarrow\) Tích hệ số góc của chúng bằng -1

Ta có: \(\left(m-4\right)x+\left(m-3\right)y=1\Rightarrow\left(3-m\right)y=\left(m-4\right)x-1\)

\(\Rightarrow y=\dfrac{m-4}{3-m}-\dfrac{1}{3-m}\)

\(\Rightarrow\left(\dfrac{m-4}{3-m}\right).\left(-1\right)=-1\)

\(\Rightarrow m-4=3-m\)

\(\Rightarrow m=\dfrac{7}{2}\)

16 tháng 4 2020

rưefdrgrtyh

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2

25 tháng 3 2022

Hoành độ giao điểm (P) ; (d) tm pt 

\(\frac{1}{2}x^2-x-\frac{1}{2}m^2-m-1=0\)

\(\Leftrightarrow x^2-2x-m^2-2m-2=0\)

\(\Delta'=1-\left(-m^2-2m-2\right)=m^2+2m+3=\left(m+1\right)^2+2>0\)

Vậy pt luôn có 2 nghiệm pb 

Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2-2m-2\end{cases}}\)

Ta có \(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=68\)

\(\Leftrightarrow8-6\left(-m^2-2m-2\right)=68\)

\(\Leftrightarrow6m^2+12m-48=0\Leftrightarrow m=2;m=-4\)

26 tháng 3 2022

Xét Pt hoành độ.......

\(\dfrac{1}{2}x^2=x+\dfrac{1}{2}m^2+m+1\\ \Leftrightarrow x^2-2x-m^2-2m-2=0\left(1\right)\)

Để ... thì Δ'>0

1+m2+2m+2>0 ⇔(m+1)2+2>0 (Hiển nhiên)

Với mọi m thì (1) sẽ có 2 nghiệm x1; x2.

*) Theo Hệ thức Viet ta có: 

S=x1+x2=2 và P=x1x2= -m2-2m-2

*)Ta có: 

\(\text{x^3_1 ​ +x ^3_2 ​ =68\Leftrightarrow(x_1+x_2)(x_1}^2-x_1x_2+x_2^2\left(\right)=68\\ \)

⇔(x1+x2)[(x1+x2)2-2x1x2-x1x2 ]=68 ⇔2[22-3(-m2-2m-2)]=68

⇔3m2+6m-24=0⇔m=2 và m=-4 

KL: 

 

22 tháng 9 2020

2) Đẳng thức điều kiện tương đương với \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1\Rightarrow1+a,1+b,1+c\ne0\)

Ta có: \(S=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1}{1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)}\)\(+\frac{1}{1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)}\)

\(=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1+a}{\left(1+a\right)\left[1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)\right]}\)\(+\frac{\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\text{[}1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)\text{]}}=\frac{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}=1\)