\(\sqrt{2}\) BD, hình chiếu của điểm A t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2016

Gọi \(I=AM\cap BN\)\(\Delta BIM\) đồng dạng  \(\Delta ABM\)

suy ra \(AM\perp BN\)  nên \(BN:-2x-y+c=0\) 

\(N\left(0;-2\right)\Rightarrow c=-2\Rightarrow BN:2x-y-2=0\)

Tọa độ điểm I là nghiệm hệ phương trình :

\(\begin{cases}x+2y-2=0\\2x-y-2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{6}{5}\\y=\frac{2}{5}\end{cases}\) \(\Rightarrow I\left(\frac{6}{5};\frac{2}{5}\right)\)

Từ \(\Delta ABM\) vuông : \(BI=\frac{AB.BM}{\sqrt{AB^2+BM^2}}=\frac{4}{\sqrt{5}}\)

Tọa độ điểm \(B\left(x;y\right)\) thỏa mãn \(\begin{cases}B\in BN\\BI=\frac{4}{\sqrt{5}}\end{cases}\) \(\Rightarrow\begin{cases}2x-y-2=0\\\left(\frac{6}{5}-x\right)^2+\left(\frac{2}{5}-y\right)^2=\frac{16}{5}\end{cases}\)

Giải hệ ta được \(\begin{cases}x=2\\y=2\end{cases}\) và \(\begin{cases}x=\frac{2}{5}\\y=\frac{-6}{5}\end{cases}\) Suy ra \(B\left(2;2\right)\)    Loại \(\left(\frac{2}{5};-\frac{6}{5}\right)\)

Tọa đọ M(x;y) thỏa mãn \(\begin{cases}M\in AM\\IM=\sqrt{BM^2-BI^2}\end{cases}\)  \(\Rightarrow\begin{cases}x+2y-2=0\\\left(x-\frac{6}{5}\right)^2+\left(y-\frac{2}{5}\right)^2=\frac{4}{5}\end{cases}\)

Giải hệ ta được : \(\begin{cases}x=2\\y=0\end{cases}\) và \(\begin{cases}x=\frac{2}{5}\\y=\frac{4}{5}\end{cases}\) suy ra \(M_1\left(2;0\right);M_2\left(\frac{2}{5};\frac{4}{5}\right)\)

8 tháng 4 2016

câu b

 

5 tháng 4 2016

C K O E H F B A D

Trên \(\Delta\) lấy điểm D sao cho à D, A nằm khác phía nhau so với B. Gọi E là giao điểm của các đường thẳng KA và OC; Gọi F là giao điểm của các đường thẳng KB và OD

Vì K là tâm đường tròn bàng tiếp góc O của tam giác OAB nên KE là phân giác của góc OAC. Mà OAC là tam giác cân tại A ( do OA = AC, theo gt) nên suy ra KE cũng là đường trung trục của OC. Do đó, E là trung điểm của OC và KC=KO

Xét tương tự đối với KF, ta cũng có F là trung điểm của OD và KD=KO

Suy ra tam giác CKD cân tại K. Do đó, hạ KH vuông góc với  \(\Delta\) , ta có H là trung điểm của CD. Như vậy :

+ A là giao của  \(\Delta\)  và đường trung trực \(d_1\) của đoạn OC (1)

+ B là giao của  \(\Delta\)  và đường trung trực \(d_2\) của đoạn OD, với D là điểm đối xứng của C qua H là hình chiếu vuông góc của K trên  \(\Delta\)  (2)

Vì \(C\in\Delta\) và có hoành độ \(x_0=\frac{24}{5}\) nên gọi \(y_0\) là tung độ của C, ta có :

\(2.\frac{24}{5}+3y_0-12=0\) suy ra \(y_0=-\frac{12}{5}\)

Từ đó, trung điểm E của OC có tọa độ là \(\left(\frac{12}{5};-\frac{6}{5}\right)\) và đường thẳng OC có phương trình \(x+2y=0\)

Suy ra phương trình của \(d_1\) là \(2x-y-6=0\)

Do đó, theo (1), tọa độ của A là nghiệm của hệ phương trình :

\(\begin{cases}4x+3y-12=0\\2x-y-6=0\end{cases}\)

Giải hệ ta có \(A=\left(3;0\right)\)

5 tháng 4 2016

Để tìm tọa độ đỉnh B ta làm như sau :

Gọi d là đường thẳng đi qua K(6;6) và vuông góc với \(\Delta\).

Ta có phương trình của d là : \(3x-4y+6=0\). Từ đây, do H là giao điểm của  \(\Delta\). và d nên tọa độ của H là nghiệm của hệ phương trình :

\(\begin{cases}4x+3y-12=0\\3x-4y+6=0\end{cases}\)

Giải hệ trên, ta được \(H=\left(\frac{6}{5};\frac{12}{5}\right)\) suy ta \(D=\left(-\frac{12}{5};\frac{26}{5}\right)\)

Do đó, trung điểm F của OD có tọa độ là \(\left(-\frac{6}{5};\frac{18}{5}\right)\) và đường thẳng OD có phương trình \(3x+y=0\)

Suy ra phương trình của \(d_2\) là \(x-3y+12=0\)

Do đó, theo (2), tọa độ B là nghiệm của hệ phương trình :

\(\begin{cases}4x+3y-12=0\\x-3y+12=0\end{cases}\)

Giải hệ trên ta được B=(0;4)

 

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

18 tháng 4 2016

S H B K A I C D

Gọi K là hình chiếu của I lên AB

Suy ra \(\widehat{SKI=60^0}\)

Mà \(\frac{BI}{ID}=\frac{BC}{AD}=\frac{a}{3a}=\frac{1}{2}\)\(\Rightarrow\frac{BI}{BI+ID}=\frac{1}{4}\)\(\Rightarrow\frac{BI}{BD}=\frac{1}{4}\)

Suy ra \(\frac{KI}{DA}=\frac{1}{4}\)\(\Rightarrow KI=\frac{3a}{4}\Rightarrow SI=\frac{3a\sqrt{3}}{4}\)

Do \(IK\) \\ \(AD\Rightarrow\frac{KI}{AD}=\frac{BI}{BD}\)

\(V_{A.ABCD}=\frac{1}{3}.SI.S_{ABCD}=\frac{1}{3}.\frac{3a\sqrt{3}}{4}.\frac{1}{2}\left(a+3a\right)a=\frac{a^3\sqrt{3}}{2}\)

Gọi H là hình chiếu của I trên SK. Ta có \(\begin{cases}AB\perp IK\\AB\perp SI\end{cases}\)\(\Rightarrow AB\perp IH\)

Từ đó suy ra \(IK\perp\left(SAB\right)\Rightarrow d\left(I,\left(SAB\right)\right)=IK\)

Mà do \(DB=4IB\Rightarrow\left(D,\left(SAB\right)\right)=4d\left(I,\left(SAB\right)\right)=4IH\)

Lại có \(\frac{1}{IH^2}=\frac{1}{IS^2}+\frac{1}{IK^2}=\frac{16}{27a^2}+\frac{16}{9a^2}=\frac{64}{27a^2}\Leftrightarrow IH=\frac{3a\sqrt{3}}{8}\)

Vậy  \(d\left(D,\left(SAB\right)\right)=\frac{3a\sqrt{3}}{2}\)

25 tháng 4 2018

de ***** tu lam dihihi

18 tháng 5 2016

bài này 2 cách làm. làm . A(-2;4) B(-2;-1) C(3;-1) D(3;-1)

18 tháng 5 2016

đường thẳng AB qua H và vuông HE nên ptdt AB : x+2=0

đường thẳng AD qua K và vuông KE nên ptdt AD : -y+4=0

Tọa độ A là nghiệm của hệ : \(\begin{cases}x+2=0\\-y+4=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=-2\\y=4\end{cases}\) vậy A(-2;4)

\(\overrightarrow{HE}=\left(4;0\right)\Rightarrow HE=AK=4;\overrightarrow{KE}=\left(0;-1\right)\Rightarrow KE=1\) . Vậy \(\overrightarrow{AK}=\frac{4}{5}\overrightarrow{AD}\) , có \(\overrightarrow{AK}=\left(4;0\right);\overrightarrow{AD}=\left(x_D+2;y_D-4\right)\) ta có hê : \(\begin{cases}4=\frac{4}{5}\left(x_D+2\right)\\0=\frac{4}{5}\left(y_D-4\right)\end{cases}\) \(\Leftrightarrow\begin{cases}x=3\\y=4\end{cases}\)Vậy D(3;4) 

ptdt DE đi qua D và E nên ta có ptdt: x-y+1=0

Tọa độ điểm B là nghiêm của hệ phương trình đường thẳng DE và AB: \(\begin{cases}x-y=-1\\x=-2\end{cases}\) \(\Leftrightarrow\begin{cases}x=-2\\y=-1\end{cases}\) Vậy B(-2;-1)

Goi O(xo ;yo) là giao điểm của BD và AC. ta có : \(\begin{cases}x_o=\frac{-2+3}{2}=\frac{1}{2}\\y_o=\frac{-1+4}{2}=\frac{3}{2}\end{cases}\) Vậy O(\(\frac{1}{2};\frac{3}{2}\)) . O là trung điểm của AC nên C(3;-1)

11 tháng 4 2016

A B C D M H K N E

Gọi \(E=BN\cap AD\Rightarrow D\) là trung điểm của AE.

Dựng \(AH\perp BN\) tại H \(\Rightarrow AH=d\left(A;BN\right)=\frac{8}{\sqrt{5}}\)

Trong tam giác vuông ABE : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AE^2}=\frac{5}{4AB^2}\Rightarrow AB=\frac{\sqrt{5}.AH}{2}=4\)

\(B\in BN\Rightarrow B\left(b;8-2b\right)\left(b>2\right)\)

\(AB=4\Rightarrow B\left(3;2\right)\)

Phương trình AE : \(x+1=0\)

\(E=AE\cap BN\Rightarrow E\left(-1;10\right)\Rightarrow D\left(-1;6\right)\Rightarrow M\left(-1;4\right)\)

Gọi I là tâm của (BKM) => I là trung điểm của BM => I(1;3)

\(R=\frac{BM}{2}=\sqrt{5}\)

Vậy phương trình đường tròn : \(\left(x-1\right)^2+\left(y-3\right)^2=5\)

28 tháng 9 2016

5