Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi điểm D(x,y) là điểm cần tìm.
Tứ giác ABCD là hình bình hành khi và chỉ khi: \(\overrightarrow{AB}=\overrightarrow{DC}\).
\(\overrightarrow{AB}\left(2;4\right)\); \(\overrightarrow{DC}\left(-4-x;1-y\right)\).
\(\overrightarrow{AB}=\overrightarrow{DC}\)\(\Leftrightarrow\left\{{}\begin{matrix}-4-x=2\\1-y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)\(\Leftrightarrow D\left(-6;-3\right)\).
- Tìm tọa độ điểm I.
\(x_I=\dfrac{x_A+x_C}{2}=\dfrac{-1}{2}\); \(y_I=\dfrac{y_A+y_C}{2}=\dfrac{9}{2}\).
Vậy \(I\left(-\dfrac{1}{2};\dfrac{9}{2}\right)\).
- Tìm tọa độ điểm D.
Gọi \(D\left(x;y\right)\)
Tứ giác ABCD là hình bình hành \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\).
\(\overrightarrow{AB}=\left(1;-7\right)\); \(\overrightarrow{DC}=\left(4-x;3-y\right)\).
Do \(\overrightarrow{AB}=\overrightarrow{DC}\) nên:
\(\left\{{}\begin{matrix}4-x=1\\3-y=-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-10\end{matrix}\right.\).
Vậy \(D\left(3;-10\right)\).
Ta có: = (1; 7); = (1; 7)
= => ABCD là hình bình hành (1)
ta lại có : AB2 = 50 => AB = 5 √2
AD2 = 50 => AD = 5 √2
AB = AD, kết hợp với (1) => ABCD là hình thoi (2)
Mặt khác = (1; 7); = (-7; 1)
1.7 + (-7).1 = 0 => ⊥ (3)
Kết hợp (2) và (3) suy ra ABCD là hình vuông
a) \(x_G=\dfrac{-3+9+\left(-5\right)}{3}=\dfrac{1}{3}\).
\(y_G=\dfrac{6+\left(-10\right)+4}{3}=0\).
Vậy \(G\left(\dfrac{1}{3};0\right)\).
b) Tứ giác BGCD là hình bình hành khi và chỉ khi:
\(\overrightarrow{BG}=\overrightarrow{CD}\).
Gọi \(D\left(x;y\right)\).
\(\overrightarrow{BG}\left(-\dfrac{26}{3};10\right);\overrightarrow{CD}\left(x+5;y-4\right)\).
Do \(\overrightarrow{BG}=\overrightarrow{CD}\) nên \(\left\{{}\begin{matrix}x+5=-\dfrac{26}{3}\\y-4=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{41}{3}\\y=14\end{matrix}\right.\).
Vậy \(D\left(-\dfrac{41}{3};14\right)\).
1, Gọi tọa độ điểm D(x;y)
Ta có:\(\overrightarrow{AB}\left(8;1\right)\)
\(\overrightarrow{DC}\left(1-x;5-y\right)\)
Tứ giác ABCD là hình bình hành khi
\(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow1-x=8;5-y=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)
Vậy tọa độ điểm D(-7;4)
a)Gọi \(D\left(x;y\right)\) là tọa độ điểm cần tìm.
\(\overrightarrow{AD}\left(x-2;y-4\right)\); \(\overrightarrow{BC}\left(2;-4\right)\).
Tứ giác ABCD là hình bình hành khi và chỉ khi:
\(\overrightarrow{AD}=\overrightarrow{BC}\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=2\\y-4=-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)\(\Rightarrow D\left(4;0\right)\).
b) Gọi\(A'\left(x;y\right)\) là điểm cần tìm. A' thỏa mãn hai điều sau:
- \(AA'\perp BC\). (1)
- A' , B, C thẳng hàng. (2)
\(\overrightarrow{AA'}\left(x-2;y-4\right)\); \(\overrightarrow{BC}\left(2;-4\right)\).
\(\left(1\right)\Leftrightarrow\overrightarrow{AA'}.\overrightarrow{BC}=\overrightarrow{0}\)\(\Leftrightarrow2\left(x-2\right)-4\left(y-4\right)=0\) (3)
(2) suy ra hai véc tơ \(\overrightarrow{A'B}\) và \(\overrightarrow{BC}\) cùng phương.
Có \(\overrightarrow{A'B}\left(1-x;3-y\right)\).
Nên \(\dfrac{1-x}{2}=\dfrac{3-y}{4}\) (4)
Từ (3) và (4) suy ra: \(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\).
Vậy A'(1;3).