K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2015

Trong 2010 điểm đã cho, tồn tại 2 điểm A,B sao cho 2008 điểm còn lại nằm cùng phía đối với AB

Vì không có 4 điểm nào cùng thuộc một đường tròn nên ta đặt 2008 điểm còn lại lần lượt là 

N1,N2,N3....,N2008

sao cho 

AN1B>AN2B>AN3B>....>AN2008B

Ta vẽ đường tròn đi qua 3 điểm  

A,B,N1001

Khi đó các điểm N1,N2,N3....,N1000 nằm trong đường tròn đã vẽ và 1007 điểm còn lại nằm ngoài đường tròn (đpcm)

ko chắc đâu nhoa

24 tháng 1 2020

thế cũng hỏi

1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\) 2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.CMR...
Đọc tiếp

1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.

Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\) 

2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.

CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín

3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.

CMR tồn tại một đường tròn đi qua 3 trong 2012 điểm đã cho mà đường tròn này không chứa bất kì điểm nào trong số những điểm còn lại

4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.

CMR qua mỗi điểm co không quá 5 đoạn thẳng

5. Cho 7 số nguyên dương khác nhau không vượt quá 1706. 

 

CMR tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a

0
15 tháng 4 2020

Ta chia hình vuông đề cho thành 16 hình vuông nhỏ bằng nhau (như hình vẽ)

Ta được độ dài cạnh của hình vuông nhỏ là 1
Có 33 điểm đặt vào 16 hình vuông theo nguyên lí Dirichlet
Suy ra tồn tại một hình vuông nhỏ chứa ít nhất 3 điểm
Giả sử hình vuông nhỏ đó là: ABCD (AC cắt BD tại O)
Có \(OA=\frac{AC}{2}=\frac{\sqrt{AB^2+BC^2}}{2}=\frac{\sqrt{1^2+1^2}}{2}=\frac{\sqrt{2}}{2}\)\(\Rightarrow AC=BD=\sqrt{2}\)

Giả sử 3 điểm đó trùng với 3 trong 4 đỉnh bất kì của hình vuông ABCD thì phần chung của ba hình tròn chứa toàn bộ hình vuông và như vậy đã tồn tại 3 điểm thỏa mãn yêu cầu bài toán.
Nếu trong 3 điểm có điểm nằm bên trong hình vuông thì phần chung của ba hình tròn cũng chứa toàn bộ hình vuông và như vậy đã tồn tại 3 điểm thỏa mãn yêu cầu bài toán
KL: tồn tại 3 điểm trong các điểm đã cho thỏa mãn yêu cầu bài toán.

7 tháng 6 2020

Khó thế này ai lm đc

15 tháng 10 2017
a. B, C là các điểm nằm trong mặt phẳng (P). Đ
b, Mặt phẳng (P) chứa đựờng thắng AB S
c. Đường thẳng l cắt AB ở điểm B S
d. A,B,G là ba điểm cùng nằm trên một mặt phẳng Đ
e. B,F và D là ba điểm thẳng hàng S
f. B,C,E và D là bốn điểm cùng nằm trên một mặt phẳng Đ
2 tháng 6 2017

cho 5 điểm trên bờ mặt phẳng chứ sao trên mặt phẳng đc