K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2016

O A B C D B' A' D' C' M K O a a

a. Từ giả thiết ta có :

\(C\left(a;a;0\right);C'\left(a;a;b\right);D'\left(0;a;b\right);B'\left(a;0;b\right)\)

Vì M là trung điểm của CC' nên \(M=\left(a;a;\frac{b}{2}\right)\)

Ta có :

\(\overrightarrow{BD}=\left(-a;a;0\right)\)

\(\overrightarrow{BA}=\left(-a;0;b\right)\)

\(\overrightarrow{BM}=\left(0;a;\frac{b}{2}\right)\)

Vì thế \(\left[\overrightarrow{BD};\overrightarrow{BA'}\right]=\left(\left|\begin{matrix}a&0\\0&b\end{matrix}\right|;\left|\begin{matrix}0&-a\\b&-a\end{matrix}\right|;\left|\begin{matrix}-a&a\\-a&0\end{matrix}\right|\right)\)

                              \(=\left(ab,ab,a^2\right)\)

Vậy \(V_{BDa'M}=\frac{1}{6}\left|\left[\overrightarrow{BD};\overrightarrow{BA'}\right].\overrightarrow{BM}\right|=\frac{1}{6}\left|a^2b+\frac{a^2b}{2}\right|=\frac{a^2b}{4}\)

b. Gọi K là trung điểm của BD. Do \(A'B=A'D\Rightarrow A'K\perp BD\)

Lại có \(MB=MD\Rightarrow MK\perp BD\)

Vậy \(\widehat{A'KM}=90^0\)

\(\Leftrightarrow\overrightarrow{A'K}.\overrightarrow{MK}=0\)

Ta có : 

\(K=\left(\frac{a}{2};\frac{a}{2};0\right)\) do đó :

\(\overrightarrow{A'K}=\left(\frac{a}{2};\frac{a}{2};-b\right)\)

\(\overrightarrow{MK}=\left(-\frac{a}{2};\frac{-a}{2};\frac{-b}{2}\right)\)

Vậy \(\left(1\right)\Leftrightarrow-\frac{a^2}{4}-\frac{a^2}{4}+\frac{b^2}{2}=0\)

             \(\Leftrightarrow b^2=a^2\)

             \(\Leftrightarrow\frac{a}{b}=1\)

Do (a>0,b>0)  vì thế \(\left(A'BD\right)\perp\left(MBD\right)\Leftrightarrow\frac{a}{b}=1\)

 

26 tháng 5 2017

Ta có : \(\overrightarrow{AB}=\left(-a;b;0\right)\)

\(\overrightarrow{AC}=\left(-a;0;c\right)\)

\(\overrightarrow{AB}.\overrightarrow{AC}=a^2>0\) nên góc \(\widehat{BAC}\) là góc nhọn

Lập luận tương tự chứng minh được các góc \(\widehat{B}\)\(\widehat{C}\) cũng là góc nhọn

1 tháng 4 2017

Giải:

a) Măt phẳng (P) đi qua điểm M(1; -2; 4) và nhận = (2; 3; 5) làm vectơ pháp tuyến có phương trình:

2(x - 1) + 3(x +2) + 5(z - 4) = 0 ⇔ (P) : 2x + 3y + 5z -16 = 0.

b) Xét = (2 ; -6 ; 6), khi đó ⊥ (Q) là mặt phẳng qua A (0 ; -1 ; 2) và song song với , (nhận , làm vectơ chỉ phương).

Phương trình mặt phẳng (Q) có dạng:

2(x - 0) - 6(y + 1) + 6(z - 2) = 0 ⇔ (Q) :x - 3y + 3z - 9 = 0

c) Gọi (R) là mặt phẳng qua A, B, C khi đó , là cặp vectơ chỉ phương của (R).

= (2 ; 3 ; 6)

Vậy phương trình mặt phẳng (R) có dạng: 2x + 3y + 6z + 6 = 0

27 tháng 4 2017

Hỏi đáp Toán

14 tháng 4 2016

\(\overrightarrow{AB}=\left(-1;-2;1\right)\)\(\overrightarrow{n_{\alpha}}=\left(2;-1;2\right)\)\(\Rightarrow\overrightarrow{n_p}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(-3;4;5\right)\)

Phương trình mặt phẳng (P) : \(-3x+4y+5z=0\)

\(R=d\left(A;\left(\alpha\right)\right)=\frac{\left|6-1+2+1\right|}{\sqrt{9}}=\frac{8}{3}\)

Phương trình mặt cầu (S) : \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=\frac{64}{9}\)

22 tháng 5 2017

Ôn tập chương III

Ôn tập chương III

23 tháng 5 2017

Ôn tập cuối năm môn hình học 12

Ôn tập cuối năm môn hình học 12

3 tháng 1 2022

<666> ma trong olm 3 sáng 

22 tháng 5 2017

Ôn tập chương III