K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CM
3 tháng 8 2019
Mặt phẳng là mặt phẳng đi qua A(0;1;2) và có VTPT
Khi đó
• (P) vuông góc với α nên: a - b + c = 0
• (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất khi và chỉ khi khoảng cách từ tâm mặt cầu đến mặt phẳng (P) là lớn nhất. Ta có
Dấu "x" xảy ra
Chọn c = -1, suy ra
Khi đó
Chọn C.
Đáp án A.
Mặt cầu (S) có tâm O ( 0 ; 4 ; 0 ) và bán kính R = 5 .Điểm A ∈ O y → A ( 0 ; b ; 0 ) . Khi đó ba mặt phẳng theo giả thiết đi qua A và có phương trình tổng quát lần lượt là α 1 : x = 0 , α 2 : y - b = 0 và α 3 : z = 0 .
Nhận thấy d I ; α 1 = d I ; α 2 = d I ; α 3 = 0 nên mặt cầu (S) cắt các mặt phẳng α 1 , α 3 theo giao tuyến là đường tròn lớn có tâm I, bán kính R = 5 . Tổng diện tích của hai hình tròn đó là S 1 + S 3 = 2 πR 2 = 10 π .
Suy ra mặt cầu (S) cắt α 2 theo giao tuyến là một đường tròn có diện tích là S 3 = 11 π - S 1 + S 2 = 11 π - 10 π = π . Bán kính đường tròn này là r = S 3 π = 1 .
→ d I , α 3 = R 2 - r 2 = 2 = 4 - b ⇔ b = 2 b = 6 . Vậy A 0 ; 2 ; 0 A ( 0 ; 6 ; 0 ) .