Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\left(2nx+\dfrac{1}{2nx^2}\right)^{3n}=\sum\limits^{3n}_{k=0}C^k_{3n}\left(2nx\right)^{3n-k}\left(\dfrac{1}{2nx^2}\right)^k\)
\(=\sum\limits^{3n}_{k=0}C^k_{3n}2^{3n-2k}\left(n\right)^{3n-2k}\left(x\right)^{3n-3k}\)
\(\Rightarrow\) tổng hệ số bằng : \(C^0_{3n}+C_{3n}^1+C^2_{3n}+...+C^{3n}_{3n}=64\)
\(\Leftrightarrow\left(1+1\right)^{3n}=64\Leftrightarrow2^{3n}=2^6\Rightarrow n=2\)
để có số hạng không chữa \(x\) không khai triển thì \(3n-3k=0\Leftrightarrow n=k\)
\(\Rightarrow\) hệ số của số hạng không chữa \(x\) là \(C^2_6.2^2.2^2=240\)
vậy ...........................................................................................................................
Mysterious Person bn ơi cho mik hỏi chút nha , tại sao ở trên có
23n-2kn3n-2k mà ở dưới phần tổng hệ số í lại ko có ....Mong bn giúp mik ...
Đáp án C
Trong khai triển nhị thức a + b n thì số các số hạng là n + 1 nên trong khai triển 2 x - 3 2018 có 2019 số hạng.
ta có : \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}=\sum\limits^{12}_{k=0}C^k_{12}\left(\dfrac{x}{3}\right)^{12-k}.\left(-1\right)^k\left(\dfrac{3}{x}\right)^k\)
\(=\sum\limits^{12}_{k=0}C^k_{12}\left(-1\right)^k\dfrac{\left(x\right)^{12-2k}}{3^{12-2k}}\)
\(\Rightarrow\) để có số hạng chứa \(x^4\) thì \(12-2k=4\Leftrightarrow k=4\)
\(\Rightarrow\) hệ số của số hạng chứa \(x^4\) là : \(\dfrac{C^4_{12}\left(-1\right)^4}{3^4}=\dfrac{55}{9}\)
vậy ............................................................................................................
`2^n C_n ^0+2^[n-1] C_n ^1+2^[n-2] +... +C_n ^n=59049`
`<=>(2+1)^n=59049`
`<=>3^n=59049`
`<=>n=10 =>(2x^2+1/[x^3])^10`
Xét số hạng thứ `k+1:`
`C_10 ^k (2x^2)^[10-k] (1/[x^3])^k ,0 <= k <= 10`
`=C_10 ^k 2^[10-k] x^[20-5k]`
Số hạng chứa `x_5` xảy ra `<=>20-5k=5<=>k=3`
Với `k=3` thì số hạng cần tìm là: `C_10 ^3 2^[10-3] x^5=15360 x^5`
2021 số