K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

14 tháng 12 2017

 

 

  Đáp án A

20 tháng 10 2017

16 tháng 2 2019

23 tháng 4 2018

Chọn D

Gọi I (m; 0; 0) là tâm mặt cầu có bán kính R d1d2 là các khoảng cách từ I đến (P) và (Q).

 

Yêu cầu bài toán tương đương phương trình (1) có đúng một nghiệm m

25 tháng 5 2019

Đáp án B.

Phương pháp giải: Công thức tính bán kính đường tròn giao tuyến là  

Lời giải:

Xét mặt cầu  ( S ) :   x - 1 2 + y - 2 2 + z - 2 2 = 9 có tâm I(1;2;2) bán kính R =3

Khoảng cách từ tâm I đến (P) là

Vậy bán kính đường tròn giao tuyến là 

14 tháng 2 2019

Chọn D

Phương pháp

 

+ Cho mặt cầu (S) có tâm I và bán kính R và mặt phẳng (P) cắt mặt cầu theo giao tuyến là đường tròn có bán kính r thì ta có mối liên hệ lCMai1aQRt5y.png với h = d(I,(P)). Từ đó ta tính được R.

Cách giải

 

+ Ta có

11 tháng 5 2019

Đáp án D

Khoảng cách từ tâm I đến mặt phẳng  (P) là d(I;(P))=3

Ta có  R = r 2 + d 2 = 5 2 + 3 2 = 34  với R là bán kính mặt cầu   (S)

Phương trình mặt cầu là  S : x + 1 2 + y - 2 2 + z + 1 2 = 34

18 tháng 6 2018